

Aplicação do Pigmento Cerâmico Vermelho Perovskita Y(AI,Cr)O, em Diversas Matrizes Cerâmicas

Lepri Neto C.ª, Baldi G.^b, Boschi A.O.ª*, Dondi M.^c, Matteucci F.^c

^aLaboratório de Revestimentos Cerâmicos - LaRC, Universidade Federal de São Carlos, 13565-905 São Carlos - SP, Brasil ^bColorobbia Italia SpA, Via Pietramarina 123, 50023 Sovigliana Vinci ^cCNR-ISTEC, Istituto di Scienza e Tecnologia dei Materiali Ceramici, via Granarolo 64, 48018 Faenza, Italia *e-mail: daob@power.ufscar.br

Resumo: O objetivo do seguinte estudo é a utilização tecnológica da perovskita vermelha em várias aplicações cerâmicas, tentando compreender quais parâmetros influenciam na coloração do pigmento nos diversos tipos de esmaltes e massas cerâmicas, também como se comporta a sua dissolução na fase líquida em altas temperaturas.

Palavras-chave: pigmento cerâmico, perovskita, caracterização colorimétrica, grês porcelanato, esmalte cerâmico

1. Introdução

Para um pigmento cerâmico desenvolver uma pura cor vermelha, intensa e estável nos vários tipos de massas e revestimentos cerâmicos tem sido uns dos principais temas de pesquisas dos colorificios1-2. Atualmente a produção industrial deste tipo de pigmento vermelho não é satisfatória, nas várias aplicações cerâmicas, por razões ambientais, tecnológicas e cromáticas3. A coloração amarela-laranja-vermelha obtida atravé s da solução sólida CdSe₁ S₂ é termicamente instavél e apresenta graves problemas ambientais e de saúde, ligada a alta toxidade do cadmio e selenio. Para superar tais obstáculos, recorre-se o englobamento do zirconio, que é um processo tecnologicamente difícil e de eficiência limitada, além do alto custo de produção que o zirconio agrega ao processo4-5. Os outros pigmentos disponíveis não possuem uma cor verdadeiramente vermelha; no caso da malayaita (CaSn, "Cr,SiO_s) que possui uma cor magenta, a hematita-zircônio $(ZrSiO_4 + Fe_2O_3)$ que possui uma cor azulada, e o corindum (Al_2) Mn_vCr_vO₃) que possui uma cor rosada⁶⁻⁸.

Nestes ultimos anos surgiu um novo tipo de pigmento industrial – o aluminato de Ytrio $YAI_{1-x}Cr_{x}O_{3}$ onde 0,03 < x < 0,12 – que é obtido através de um processo cerâmico convencional e não apresenta limitação de emprego pelo ponto de vista ambiental, pois os precursores do produto final não são tóxicos⁹⁻¹¹. Como podemos observar na Figura 1, tal produto possui uma coloração vermelha mais pura e mais saturada após o sulfoselenio de cadmio¹²⁻¹³.

Este pigmento tem estrutura perovskitica do tipo $A^{III}B^{III}O_3$, isto é, com os cátions trivalentes, caracterizada por dois diferentes lugares catiônicos (Figura 2):

- A é dodecaédrico, com Y coordenado de 9 oxigênios, dispostos nos vértices de um poliedro rodeado de 8 octaedros¹⁴; e
- B é octaedro, isto é, no centro do octaedro divide todos os vértices, e hospeda Cr³⁺ com substituição parcial do Al, é a origem da coloração vermelha, resultante do absorvimento seletivo da radiação verde-azul-violeta, devido a um complexo efeito do forte campo cristalino da perovskita¹⁵.

Esta estrutura assegura uma elevada refratariedade (ponto de fusão 1950 °C) no qual se consegue boas propriedades óticas e uma notável inércia química⁹.

O objetivo do seguinte estudo é a utilização tecnológica da perovskita vermelha em várias aplicações cerâmicas, tentando compreender quais parâmetros influenciam na coloração do pigmento nos diversos tipos de esmaltes e massas cerâmicas, também como se comporta a sua dissolução na fase líquida em altas temperaturas. Até agora foram efetuadas provas tecnológicas com o pigmento industrial em diferentes massas de grês porcelanato, fritas e esmaltes e foram determinadas as cores, composições de fases dos produtos cerâmicos e a quantidade de pigmento insolúvel depois da queima em diversas condições de tempo/temperatura.

2. Materiais e Métodos

O pigmento empregado é $Y(Al,Cr)O_3$ de produção industrial, de cujo pigmento foram determinadas: as características cristalográficas da perovskita (DRX, *Philips* PW 1820/00, equipado com filamento monocromático de grafite pirolítica (001), com intervalo 15-130°, 0,02°20 intervalo de varredura de 10 s), a distribuição granulométrica (foto-sedimentação, Micromeritics Sedigraph 5100) e as coordenadas colorimétricas (espectrofotometria de reflexão difusa, Perkin Elmer α 35).

Os ensaios tecnológicos foram realizados, adicionando 3% do pigmento em peso, com diferentes tipos de esmaltes, fritas e massas cerâmicas. Em particular refere-se:

- três diferentes massas de grês porcelanato (BA = Padrão, SB = Super Branca e TL= Translúcida) dos quais as composições químicas estimada estão na Tabela 1 juntamente com as características físicas da fase vítrea a 1200 °C¹⁵; e
- duas fritas para biqueima (F1 e F2) e três esmaltes (S1 para grês porcelanato, S2 para monoqueima e S3 para monoporosa) cuja as principais características tecnológicas estão na Tabela 2.

Os corpos de provas foram queimados em forno a rolos, com ciclo de 51 minutos (frio a frio), cada um com a respectiva temperatura, que foi determinada através do microscópio aquecido, correspondendo a temperatura de máxima densificação para a massa ou de amolecimento para as fritas e esmaltes. Para estudar a cinética de dissolução do pigmento, os corpos de provas foram submetidos a três temperaturas

Figura 1. Cores dos pigmentos cerâmicos feitos industrialmente.

Figura 2. Estrutura da perovskita.

distintas de queima e a três patamares de queimas distintos (5, 15 ou 45 minutos). As temperaturas foram 950, 1050 e 1150 °C para F1 e F2; 1000, 1050 e 1100 °C para S3; 1050, 1100 e 1150 °C para S2; 1150, 1200 e 1250 °C para S1.

A caracterização foi realizada da seguinte maneira:

- espectrofotometria de reflexão difusa UV-vis-NIR (HunterLab Miniscan XE Plus, 400-700 nm, esmalte branco *standard*, filamento D₆₅ e observador 10°) com calculo dos parâmetros colorimetricos CIE L*, a* e b*;
- difração de raios X do pó (Rigaku Dmax IIIC, com intervalo 4-64°, e intervalo de varredura 0,02°2θ, 4 s) con interpretação quantitativa com o método do padrão interno (CaF₂) para verificar a quantidade de pigmento que não dissolveu e a componente cristalina (vítrea por diferença) do grês e dos esmaltes; e
- analisados pelo MEV (Cambridge Stereoscan 360) com variação dimensional e morfologica da partícula de pigmento, identificada através microanálise XRF-EDS (INCA 300, Oxford Instrument).

3. Resultados e Discussões

O comportamento tecnológico do pigmento perovskítico foi realizado verificando a estabilidade química e térmica nas diversas matrizes cerâmicas (esmaltes, fritas e massas de grês porcelanato) através do teste de queima com patamares crescentes a uma máxima temperatura (e com temperaturas crescentes sem variar o patamar). As amostras foram caracterizadas por colorimetria e difratometria, levando em conta a cinética de dissolução do pigmento e o seu rendimento cromático, isto é, a intensidade da cor vermelha por unidade de concentração de perovskita, e como esta é influenciada pela composição das massas e esmaltes.

3.1. Teste de aplicação na massa de grês porcelanato

Nas várias massas de grês porcelanato pôde se notar que, aumentando o patamar de queima, a coloração vermelha das massas BA e SB diminuem ligeiramente, e na massa TL a intensidade da cor cai rapidamente (Figura 3).

Isto acontece devido a diferente estabilidade química da perovskita no interior da massa com composição variada, a qual desenvolve quantidade significativamente diferente de fase líquida na máxima temperatura de queima (Figura 4).

De fato, a quantidade de perovskita residual determinada no final da queima, é mais alta na massa BA, onde há uma pequena variação em função da temperatura, em comparação com a massa SB e também em relação a massa TL. A dissolução do pigmento possui um tempo longo (entre 5 e 15 minutos) na massa SB, enquanto na massa TL a grande parte da perovskita já é dissolvida nos primeiros 5 minutos de permanência na máxima temperatura (Figura 5).

A perovskita é mais estável na massa BA, que contém de 60 a 70% de fase vítrea, que é quimicamente menos agressiva, enquanto a massa que possui a mínima estabilidade é a TL, a qual possui uma menor quantidade de fase líquida, além disso é mais agressiva devido a presença de Cao e ZnO. Portanto o comportamento da massa SB é influenciado pela rápida variação da quantidade de fase vítrea com comportamento não linear, pois com 5 minutos de patamar de queima ainda resta um grande percentual de pigmento, mas a quantidade de fase vítrea é inferior a 45%; para uma permanência de 15 minutos há uma diminuição considerável da quantidade de perovskita residual, mas com a fase vítrea em torno de 70%, fazendo com que o rendimento cromático deste seja melhor do que o corpo de prova com 5 minutos de permanência.

Neste teste, a variação do parâmetro a*, como se nota na Figura 6, é correlacionada linearmente com o percentual perovskita restante nas massas BA e TL, no entanto esta relação não é linear no caso da

Tabela 1. Composição química das massas de grês porcelanato utilizados como corpos de provas junto com o pigmento.

% em peso	Padrão (BA)		Super branca (SB)		Translúc	Translúcida (TL)	
	Massa	Fase vítrea	Massa	Fase vítrea	Massa	Fase vítrea	
SiO ₂	71,2	67,8	65,7	76,1	71,3	74,4	
TiO ₂	0,5	1,0	0,1	0,2	0,1	0,1	
ZrO ₂	< 0,1	< 0,1	7,2	0,1	< 0,1	< 0,1	
Al ₂ O ₃	15,8	17,3	16,5	10,7	14,9	12,9	
Fe ₂ O ₃	0,5	1,1	0,1	0,2	0,1	0,2	
MgO	0,5	1,0	0,2	0,5	1,7	2,4	
CaO	0,7	1,1	1,7	2,5	4,9	5,0	
ZnO	< 0,1	< 0,1	< 0,1	< 0,1	0,5	0,7	
Na ₂ O	3,2	5,6	3,3	5,6	1,4	1,7	
K2O	2,4	5,0	1,9	4,1	1,8	2,6	
P.F.	3,4	-	3,2	-	3,7	-	
Temperatura de max densificação (°C)	1210	-	1210	-	1200	-	
Indice de refração (1)	-	1,49	-	1,49	-	1,50	
Viscosidade a 1200 °C (kPa s)	-	4,4	-	4,1	-	4,4	
Tensão superf. a 1200 °C (mN m-1)	-	330	-	320	-	340	

Tabela 2. Composição química e principais propriedades tecnológicas das fritas (F1 e F2) e dos esmaltes cerâmicos (S1, S2 e S3).

% em peso	F1	F2	S1	S2	S3
$SiO_2 + TiO_2 + ZrO_2$	639	57,1	53,5	51,1	57,8
$Al_2O_3 + B_2O_3 + Sb_2O_3$	21,3	17,9	25,2	23,8	22,1
$Na_{0}O + K_{0}O + Li_{0}O$	7,2	6,1	8,6	3,2	3,5
CaO + ZnO + PbO + MgO	7,0	18,1	12,3	22,8	16,0
PbO	6,0	3,0	0	1,0	0,0
ZnO	1,0	5,0	0	5,0	3,0
B ₂ O ₃	12,0	9,0	0	1,0	2,0
Temp. de amolecimento T_1 (°C)	930	940	1210	1150	1100
Temperatura de $\frac{1}{2}$ esfera T ₂ (°C)	1265	1180	1275	1200	1195
Temperatura de fusão T_3 (°C)	1290	1230	1305	1235	1230
Indice de refração (1)	1,505	1,540	1,525	1,545	1,560
Viscosidade a T ₁ (MPa s)	4,90	4,95	4,65	4,95	5,25
Tensão superficial a T, (mN m-1)	295	325	380	395	385

Figura 3. Variação da cor vermelha (a*) em função do patamar de queima nas massas de grês porcelanato.

Figura 4. Quantidade de fase vítrea em função do patamar a 1200 °C.

massa SB. Esta aparente discrepância esta relacionada com a quantidade de fase vítrea presente nas várias massas de grês porcelanato, em quanto a capacidade de coloração do pigmento é função dos aspectos físicos e óticos, da transparência, da diferença dos índices de refração entre pigmento e matriz, e fenômenos de dispersão da luz¹⁵.

Na Figura 7 pode-se verificar como é alto o valor da relação entre a* e a quantidade de perovskita, isto é, para um alto rendimento

Figura 5. Quantidade de perovksita residual em função do patamar de queima.

Figura 6. Parâmetro a* em função da quantidade de perovskita residual nas três diferentes massas de grês porcelanato.

Figura 7. Variação da relação entre a intensidade da cor vermelha (a*) e a quantidade de perovskita residual em função da quantidade de fase vítrea nas massas de grês porcelanato.

cromático do pigmento, é necessário uma elevada quantidade de fase vítrea na massa; portanto, a capacidade colorífica do pigmento é melhorada na presença de fase vítrea. Esta relação não é linear, pois em altas quantidades de fase vítrea também corresponde uma maior taxa de dissolução do pigmento, enquanto a fase líquida banha as partículas de perovskita, acaba provocando uma agressão química muito mais eficaz que a reação no estado sólido.

As várias interações entre pigmento e fase líquida é condicionada principalmente pela característica química, pois não há uma diferença considerável, em termos de viscosidade ou tensão superficial, o índice de refração da componente vítrea é diferente nas três massas.

3.2. Teste de aplicação em esmaltes e fritas

Da Tabela 2 podemos notar as diferenças de composição química entre os diversos materiais utilizados nos teste tecnológicos; de fato as 5 matrizes utilizadas foram escolhidas para avaliarmos a capacidade colorífica do pigmento em aplicações cerâmicas muito diferentes, com um cuidado de selecionarmos condições severas, tal como a presença de elementos agressivos em confronto com o pigmento, contribuindo para a variação significativa da temperatura de fusão, viscosidade e propriedades óticas (B₂O₃, CaO, MgO, PbO, ZnO).

A intensidade da cor vermelha da perovskita varia com o aumento da temperatura de queima e também com o aumento do tempo de permanência na temperatura máxima, mas de modo diferente nas várias matrizes utilizadas (Figura 8 e 9).

O pigmento apresentou uma coloração saturada quando aplicado as fritas (F1 e F2) e com o esmalte para grês porcelanato (S1), resul-

Figura 8. Variação da cor vermelha (a*) em função do patamar de queima dos corpos de prova com frita (F1, F2) e esmalte (S1, S2, S3).

Figura 9. Variação da cor vermelha (a*) em função da temperatura máxima de queima dos corpos de prova com frita (F1, F2) e esmalte (S1, S2, S3).

tando estabilidade também para o tempo de 45 minutos na temperatura de amolecimento. A composição F1 garantiu um resultado melhor em relação ao esmalte S1 e a frita F2, devido ao maior molhamento dos grãos em virtude de uma menor tensão superficial. No caso de S1 é devido a presença de uma componente cristalina (zircônio e anortita), enquanto a frita F2 é mais agressiva pelos teores elevados de PbO, ZnO e B_2O_3 . A coloração das fritas não é estável ao aumento da temperatura, pois houve uma descoloração a 1100 °C. A intensa cor do esmalte de grês porcelanato se manteve estável até 1200 °C com 45 minutos de patamar, depois houve uma pequena diminuição com o aumento da temperatura.

A coloração dos esmaltes de monoqueima (S2) e monoporosa (S3) foi menos eficaz, como se evidencia os valores do parâmetro a*, em relação as fritas e ao esmalte para grês porcelanato. Isto acontece em primeiro lugar devido a presença de um componente cristalino em torno de 20% no esmalte S2 (anortita, e quartzo) e de 40% no esmalte S3 (zircônio, anortita, quatzo). A cor vermelha é estável seja na variação da temperatura e também ao tempo de patamar de queima; somente depois de 45 minutos de permanência tem se uma indicação de dissolução do pigmento.

Através da Figura 10 podemos notar uma relação linear entre o conteúdo de perovskita e a cor vermelha nas várias matrizes consideradas; mas há algumas exceções:

- a) diferentes valores de a* para um igual teor de perovskita, isto é, um diferente rendimento cromático que não é função somente da quantidade de pigmento, mas também das características das fritas ou do esmalte no qual o pigmento é aplicado;
- b) aumento da linearidade entre o percentual de perovskita e o parâmetro a* para altos teores de pigmento, onde é percebido um efeito de saturação da cor; e
- c) tendência da cor da matriz ao verde na ausência de perovskita.

No caso dos esmaltes, observa-se que o percentual de perovskita presente é sempre inferior ao valor inicial, para uma convergência de efeitos devido a temperaturas mais altas e dos conteúdos elevados de componentes muito agressivos em relação ao pigmento, como CaO, MgO, ZnO e B₂O₃. Uma variação moderada do parâmetro a*, acarreta em uma oscilação significativa do conteúdo de perovskita (Figura 10). Nestas circunstâncias a diferença da quantidade de fase vítrea em cada esmalte é fundamental; no entanto com um menor rendimento cromático do pigmento, o que se evidencia na amostra S2, não corresponde a uma maior quantidade de fase cristalina e portanto a uma menor quantidade de vidro no esmalte.

O mecanismo de dissolução do pigmento no interior das diversas matrizes cerâmicas foi estudado através do microscópio eletrônico

Figura 10. Variação do parâmetro a* em função do percentual de perovksita não dissolvida.

de varredura (MEV) equipado com a microanálise (EDS). Destas análises foi obtido que, aumentando o tempo do patamar das amostras de frita (F1 e F2), as partículas do pigmento diminuem de dimensão, apresentando bordas menos definidas que aparentam uma certa corrosão para o tempo de permanência de 45 minutos. Esta dissolução não influencia o rendimento cromático do pigmento, pois as partículas mantém dimensões médias superior a $5-7 \mu m$, valor este suficiente para dar a coloração desejada ao revestimento.

No esmalte para grês porcelanato (S1, Figura 11) as dimensões dos grãos não parecem diminuir com o aumento do patamar de 1200 °C, aumentando notavelmente o grau de corrosão das partículas. No entanto as bordas dos grãos aparecem bem definidos depois de 5 minutos de permanência (Figura 11a), passando para 15 minutos estas bordas tornam se menos definidas e também o interior dos grãos parecem menos homogêneo (Figura 11b); já em 45 minutos de permanência, os grãos além de apresentar as bordas corroídas também apresenta o centro agredido e quase vazio (Figura 11c). Neste caso também o ataque químico progressivo não influi significativamente na coloração vermelha, como pode se observar na Figura 8, onde a coloração permaneceu inalterada até os 45 minutos.

No esmalte de monoqueima (S2) observa se que as dimensões dos grãos passa de 10 µm para menos de 5 µm, com o aumento do patamar de 5 para 45 minutos com temperatura de 1150 °C, cresce claramente o grau de corrosão da borda dos grãos do pigmento. Esta observação confirma os dados de difração e justifica a diminuição da coloração vermelha das matrizes queimadas por longo tempo.

O esmalte de monoporosa (S3) mostra, no caso de 5 minutos de patamar a 1100 °C, uma distribuição dimensional dos grãos muito mudada para valores baixos, com dimensões máximas de cerca de 6 μ m. Depois de permanecer de 15 a 45 minutos, não foram observados grãos do pigmento, no entanto os dados de difração revelam a presença de perovskita em quantidade muito reduzida.

4. Conclusão

O comportamento tecnológico do pigmento vermelho com estrutura perovskita foi estudado através de aplicações em esmaltes, fritas e massas cerâmicas (para grês porcelanato, para monoqueima e biqueima) e analisado através de testes colorimétricos e difratométricos das amostras queimadas variando a temperatura máxima e o tempo de permanência na temperatura máxima.

A perovskita exibiu uma diferente estabilidade em cada uma das aplicações:

- O pigmento é estável a temperatura de amolecimento das fritas, no entanto o ambiente químico é notavelmente agressivo para os outros teores de álcalis, boro, zinco e chumbo; aumentando a temperatura de queima até 1150 °C, há um gradual dissolução da perovskita;
- Os esmaltes de monoporosa e de monoqueima que são particularmente ricos em cálcio e zinco – atacam e dissolvem mais facilmente o pigmento, embora o rendimento cromático depende também de outros fatores, o principal é a quantidade de fase cristalina no esmalte;
- 3. No esmalte para grês porcelanato fundamentalmente a base de álcalis (cálcio e sem boro, zinco e chumbo) – a perovskita é estável para temperaturas em torno de 1200 °C e para tempos longos de permanência, mas tende lentamente a se decompor com o aumento da temperatura; e
- 4. O pigmento é estável nas formulações BA e SB de grês porcelanato, também para tempos longos de permanência em torno de 1200 °C, enquanto este é rapidamente atacado na massa TL, por apresentar conteúdo alto de cálcio, zinco e magnésio em sua fase líquida.

Geralmente, o fator que influência mais a dissolução do pigmento, além da temperatura máxima de queima e do tempo de permanência

(a)

(b)

Figura 11. Imagens do MEV dos corpos de prova com esmalte S1 queimado a 1200 °C com patamares de 5 (A), 15 (B) ou 45 minutos (C) e os seus respectivos espectros.

nesta máxima temperatura, a presença de altos percentuais de elementos quimicamente agressivos tais como, cálcio, zinco, chumbo; e secundariamente o boro e o magnésio, presentes na fase líquida que se forma durante a queima. O rendimento colorimétrico do pigmento depende não somente da quantidade residual de perovskita, mas também da dimensão dos grãos do pigmento e da composição de fase da matriz vitrocristalina, em particular do percentual de fase vítrea que assegura um certo grau de transparência ao esmalte e ao grês porcelanato.

Em conclusão, o pigmento $(YAl_{1-x}Cr_xO_3)$ está adaptado para uma ampla gama de aplicações cerâmicas, em particular em esmaltes e massas para grês porcelanato (do tipo BA e SB) até uma temperatura de 1250 °C. Uma limitação no emprego deste pigmento vem dos esmaltes quimicamente muito agressivos, como aqueles ricos em cálcio, zinco ou chumbo, nos quais a taxa de dissolução do pigmento compromete a coloração vermelha por longo tempo de queima.

Referências

- Bondioli, F.; Manfredini, T.; Pellacani, G.C. Inorganic pigments for ceramic tiles: Characteristics and industrial applications. Interceram, v. 48, n. 6, p. 414-422, 1999.
- Costa, A.L.; Cruciani, G.; Dondi, M.; Matteucci, F. New outlooks on ceramic pigments. Industrial Ceramics, v. 23, p. 1-11, 2003.
- Garcia, A.; Llusar, M.; Calbo, J.; Tena, M.A.; Monros, G. Low toxicity red ceramic pigments for porcelanized stoneware from lanthanide-cerianite solid solutions. Green Chemistry, v. 3, p. 238-42, 2001.
- Lavilla, V.L.; Lopez Rincon, J.M. Study of the mechanism of formation of a zircon-cadmium sulphoselenide pigment, Brit. Ceram. Trans., v. 80, p. 105-108, 1981.

- De Ahna, H.D. Inclusion pigments: new types of ceramic stains and their applications. Ceram. Eng. Sci. Proc., v. 1, p. 860-62, 1980.
- Escardino, A.; Mestre, S.; Barba, A.; Monzó, M.; Jodar, P.; Diaz, L. Estability of the pink pigment (Cr)CaSnSiO₅. Interaction with ceramic materials, Qualicer 2002, p. P.GI.271-82, 2002.
- Lamilla, F. The stability study of ZrFe corals for a fast fire operation, Ceram. Eng. Sci. Proc., v. 10, n. 1-2, p. 49-51, 1989.
- Baldi, G.; Dolen, N. Synthesis of a new class of red pigments based on perovskite type lattice A_xB_(2-xy)CrYO₃ with x = 0.9-1.1, y = 0.050.12, A = Y, lanthanides, B = Al for use in body stain and high temperature glazes.effect of Cr⁺⁺⁺ and metal A on the color of ceramic pigment. Mater. Eng., v. 10, n. 2, p. 151-64, 1999.
- 9. Baldi, G.; Bitossi, M.; Del Conte, V. Yttrium and/or rare earths aluminates having perovskite structure, preparation thereof and use of as pigments. PCT/EP96/01028, WO 96/28384.
- Baldi, G; Dolen, N; Barzanti, A; Faso, V. Synthesis of a new class of red pigments based on perovskite-type lattice A(x)B((2-x-y))Cr(y)O(3) with 0.90 < x < 1, 10.05 < y < 0.12 A=Y, lanthanides, B=Al for use in body stain and high temperature glazes. Key Eng. Mater., v. 264-268, p. 1545-1548, 2004.
- Eppler, R.A. Selecting ceramic pigments. Am. Ceram. Soc. Bull., v. 66, n. 11, p. 1600-04, 1987.
- Matteucci, F.; Cruciani, G.; Dondi, M.; Guarini, G.; Raimondo, M. Colouring mechanisms in rutile-based pigments. Qualicer 2004, p. P.GI.261-272, 2004.
- Baldi, G.; Cruciani, G.; Dondi, M.; Matteucci, F. Study of the mechanism of coloration in red ceramic pigments based on perovskite structure, Key Eng. Mater., v. 264-268, p. 1549-1552, 2004.
- Mitchell, R.H. Perovskites Modern and ancient. Almaz Press, Thunder Bay, pp. 318, 2002.
- Lakatos, T.; Johansson, L.G.; Skimmingskold, B. Viscosity temperature relations in the glass systems. Glass Technol., v. 6, p.88-95, 1972.