

Isolantes Térmicos de Cinza de Casca de Arroz: Obtenção e Correlação de suas Propriedades com a Microestrutura

Margarete Regina Freitas Gonçalvesa*, Carlos Pérez Bergmannb*

^aDepartamento de Tecnologia da Construção, Faculdade de Arquitetura e Urbanismo, Universidade Federal de Pelotas – UFPel ^bDepartamento de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul – UFRGS *e-mail: margareteg@ufpel.edu.br, bergmann@ufrgs.br

Resumo: Isolantes térmicos extrudados e prensados foram obtidos a partir da utilização da cinza de casca de arroz, resíduo resultante do beneficiamento do arroz constituído de elevado teor de sílica. Estes foram caracterizados física (densidade, porosidade e condutividade térmica) e mecanicamente (resistência à compressão) e suas propriedades foram correlacionadas com a sua microestrutura. A condutividade térmica desses isolantes foi determinada pelo método de placas quentes, proposto na norma ASTM-E 1225-87 e os valores obtidos foram comparados aos de um isolante térmico comercial fabricado a partir de sílica diatomácea. Na microestrutura, observada através do MEV (microscópia eletrônica de varredura), verificou-se a morfologia das fases presentes (sólida e porosa) e sua distribuição.

Palavras-chave: cinza de casca de arroz, isolantes térmicos, propriedades físicas e mecânicas e microestrutura

1. Introdução

No mundo, mais de 70 países são produtores de arroz, com destaque para a China, Índia, Indonésia e Bangladesh. Do beneficiamento do arroz resulta um resíduo com baixa densidade e elevado volume, a casca de arroz. Este resíduo quando depositado ocupa grandes áreas, onde pode ocorrer queima *in situ* com a decorrente dispersão de cinzas gerando enorme dano ao meio ambiente.

Atualmente, os países produtores de arroz vêem-se frente ao enorme desafio de solucionar o problema de deposição da casca gerada a partir de sua utilização em sua estrutura econômica². As tentativas, no entanto, vêm enfrentando dificuldades freqüentes devido a propriedades inerentes a casca, tais como dureza, fibrosidade e natureza abrasiva, que levam a obtenção de produtos de baixa propriedade nutritiva, boa resistência ao desgaste e muita cinza.

No Brasil, notadamente nas regiões Sul e Centro-Oeste que são as maiores produtoras de arroz, a partir da década de 80 do século XX, motivada pela evolução tecnológica do beneficiamento do arroz, e pelo grande poder calorífico das cascas (aproximadamente 4.000 kcal/kg), surgiu como solução para o problema de sua deposição a céu aberto a sua utilização como substituta da lenha empregada na geração de gases quentes para secagem, em pequenos geradores de vapor e mais recentemente em fornos de produção de clínquer nas indústrias cimenteiras². Esta solução, ainda que em menor volume, passou a gerar um novo resíduo, a cinza de casca de arroz.

Para que se entenda o âmbito do problema existente, considerando-se apenas o estado do Rio Grande do Sul que representa cerca de 45% da produção nacional, os dados divulgados pelo Instituto Rio Grandense do Arroz (produção de arroz: 4.708.695 t/ano; safra 2002/03) e levando-se em conta que a casca e a cinza representam, respectivamente, 23% e 3,5% em peso do total de arroz colhido, foram geradas, somente nesta safra, cerca de 1.082.999 t/ano de cascas o que resultaria, caso toda a casca fosse utilizada, na produção de 164.804 t/ano de cinzas. Porém, em função do atual percentual

de aproveitamento da casca, que é de cerca de 30%, conclui-se que geraram-se no Estado cerca de 65.922 t/ano de cinzas.

A cinza gerada, assim como a casca excedente, vem sendo depositada a céu aberto, em beiras de estradas e margens de rios. Essas cinzas possuem características químicas, mineralógicas e morfológicas que variam em função dos equipamentos utilizados, fornalhas tipo grelha ou leito fluidizado, e das temperaturas e tempos de queima na combustão da casca³. Por exemplo, as cascas queimadas a temperaturas mais baixas, menores que 700 °C, apresentam predominância de sílica amorfa e as obtidas com temperaturas mais altas, superiores a 700 °C, a de sílica cristalina¹.

A composição química das cinzas é basicamente sílica (SiO₂), cerca de 80 a 95%, o que as torna resistentes à ataques químicos (escórias ácidas) e choques térmicos (variações de temperaturas acima de 600 °C), bem como detentoras de baixa condutividade térmica e resistência mecânica. O conjunto dessas características faz com que estas sejam potencialmente interessantes para o emprego como matéria-prima em processos industriais cerâmicos, especificamente neste trabalho para obtenção de isolantes térmicos.

Em função das diferenças entre as cinzas geradas, para desenvolvimento deste trabalho e obtenção dos isolantes térmicos, foram coletadas, em diferentes zonas produtoras do Estado do Rio Grande do Sul, amostras de cinzas caracterizadas com produção sistemática e volumosa. Estas foram analisadas química e fisicamente para definição de qual cinza seria usada na composição das massas cerâmicas dos isolantes térmicos.

Os isolantes térmicos de cinza de casca de arroz foram obtidos por extrusão e prensagem, caracterizados física (densidade aparente, porosidade e condutividade térmica) e mecanicamente (resistência à compressão) e comparados a um isolante térmico comercial fabricado a partir de sílica diatomácea. Para justificar suas propriedades estas foram correlacionadas com sua microestrutura.

2. Materiais e Métodos

2.1. Matérias-primas

2.1.1. Cinza de casca de arroz

As cinzas de cascas de arroz usadas no desenvolvimento deste trabalho encontram-se identificadas e caracterizadas física e quimicamente nas Tabelas 1, 2 e 3. A Tabela 1 apresenta os locais e as condições de obtenção das cinzas. A Tabela 2 apresenta o teor de umidade, obtido através da diferença de massa observada na secagem, a perda ao fogo, determinada por análise termogravimétrica (TG) e a densidade real, determinada por picnometria das cinzas investigadas. A Tabela 3 a composição química das cinzas, determinada por fluorescência de raios X. A Figura 1 apresenta a distribuição granulométrica das partículas de cinza de casca de arroz, determinada pelo método de peneiramento - NBR7181. Os ensaios de caracterização foram realizados no Laboratório de Materiais Cerâmicos da UFRGS em amostras de cinzas secas em estufas a 100 °C.

Tabela 1. Cinzas de casca de arroz.

Cinzas	Procedência	Condições de obtenção				
		Equipamento	Temperatura de queima (°C)			
A	Sta. Rita do Sul	grelha	700			
В	Camaquã	grelha	500			
C	Pelotas	grelha	600			
D	Eldorado do Sul	grelha	500 - 600			
E	Eldorado do Sul	grelha	600 - 700			
F	Itaqui	leito fluidizado	700			
G	Pelotas	leito fluidizado	1100			

Tabela 2. Propriedades físicas das cinzas de casca de arroz.

Cinzas	Umidade natural (%)	D _{real} (g/cm ³)	Perda ao fogo (%)
A	3,0	2,2	5,6
В	10,1	2,3	18,1
C	2,9	2,2	8,7
D	2,7	2,2	17,3
Е	3,3	2,2	10,6
F	3,9	2,3	6,7
G	1,1	2,5	2,9

Tabela 3. Composição química das cinzas de casca de arroz (% em peso).

zasem ev composição quanteu das emisas de cased de arroz (% em peso).							
	A	В	С	D	Е	F	G
Al_2O_3	1,03	0,09	0,37	0,41	0,17	0,06	0,41
SiO ₂	90,55	80,85	89,43	80,25	83,68	91,96	94,36
P ₂ O ₅ *	0,33	0,44	0,44	0,67	1,34	0,27	0,79
SO ₃ *	0,16	0,06	0,07	0,06	-	0,05	0,07
K ₂ O	0,94	0,35	1,11	1,00	3,65	0,90	1,17
CaO	1,32	0,33	0,33	0,65	1,03	0,18	0,77
Cr_2O_3	0,03	0,02	0,01	-	-	0,01	0,02
MnO	0,01	0,06	0,07	0,07	0,66	0,12	0,09
Fe ₂ O ₃	0,08	0,06	0,08	0,11	0,17	0,05	0,13
Cl*	-	0,02	0,07	-	0,14	0,03	-
NiO	0,23	-	-	-	-	-	-
Br*	-	-	-	-	0,09	-	-
С	5,15	17,57	8,15	16,54	9,07	6,32	2,09

^{*}Principais voláteis.

Os valores de perda ao fogo das cinzas investigadas foram diretamente proporcionais a quantidade de voláteis e carbono presentes e variaram de 3 a 18%. Tal situação indica a necessidade de observação das temperaturas de obtenção das cinzas tendo em vista que estas definem a quantidade de carbono residual. As cinzas obtidas a baixas temperaturas apresentam teores mais altos de carbono.

Como pode-se ver na Tabela 3, o principal constituinte das cinzas é o óxido de silício (SiO₂) e os fundentes, tais como os óxidos de cálcio e potássio, ocorrem em teores bastante baixos, sendo mais evidente a presença destes na cinza E.

Quanto a distribuição granulométrica das cinzas observa-se a presença de grãos de tamanhos variados (Figura 1). Cerca de 90% destes ficaram retidos entre as peneiras de malha #28 e #200 (diâmetro 0,59 e 0,075 mm, respectivamente), caracterizando acentuada predominância de grãos grandes, fato este mais evidenciado nas cinzas obtidas por processo de queima em grelha, a baixas temperaturas. O tamanho médio (D_{so}) de partícula variou em um intervalo de 0,18 a 0,43 mm.

A partir dos resultados de caracterização das cinzas definiu-se que seria empregada como matéria-prima na fabricação dos isolantes térmicos a cinza obtida a baixas temperaturas (≤ 700 °C) e que contive-se a maior quantidade de óxidos fundentes. A opção por cinzas queimadas a baixas temperaturas deve-se ao fato destas constituírem-se de grãos maiores, apresentarem maior quantidade de carbono residual e garantirem a presença de estrutura amorfa e baixa cristalinidade. O maior tamanho de partículas favorece a obtenção de estruturas porosas e a presença de óxidos possibilita a formação de fase vítrea durante a sinterização dos isolantes. Já a sílica amorfa é um constituinte desejável na composição de produtos cerâmicos que sofrerão ação intensa de calor e variação brusca de temperatura, devido a sua estabilidade dimensional e sua menor condutividade térmica em virtude da menor organização estrutural. A condutividade térmica dos materiais cerâmicos é dada basicamente por fônons, ou vibração da rede cristalina.

A cinza então escolhida foi a E, originária de Eldorado do Sul, obtida no intervalo de temperatura de 600 °C a 700 °C, com cerca de 9% de carbono residual, umidade natural de 3,3%, altos teores de óxidos de potássio (3,99%) e cálcio (1,13%), tamanho médio de partícula igual a 0,21 mm e com estrutura amorfa, como pode-se ver na Figura 2 ao observar-se a largura dos picos de seu difratograma. A Figura 3 apresenta a morfologia característica das partículas da cinza E.

2.1.2. Aditivos plastificantes e ligantes

Devido à inexistência de plasticidade nas cinzas, para a mistura dos componentes e conformação dos isolantes térmicos, foram adicionados plastificantes às massas cerâmicas. Estes polímeros de longas cadeias atuaram na viscosidade e elasticidade das massas, conferindo coesão entre as partículas de cinza e escoamento durante a conformação. Nas massas extrudadas foi utilizado o polissacarídio PS1 e nas prensadas o álcool polivinílico (PVA). Os aditivos utilizados são facilmente eliminados durante a sinterização e não interfere quimicamente no produto final obtido.

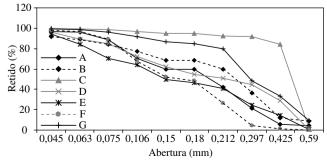


Figura 1. Distribuição granulométrica das cinzas de casca de arroz.

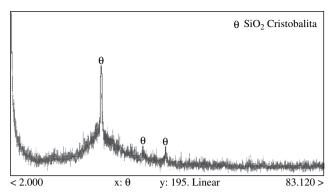


Figura 2. Difratograma da cinza utilizada como matéria-prima para a fabricação de isolantes térmicos.

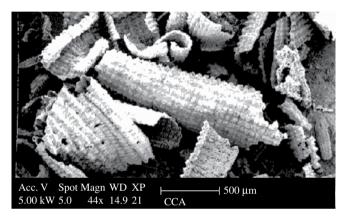


Figura 3. Morfologia da cinza E.

2.1.3. Agente formador de porosidade (carga)

Visando um aumento significativo da porosidade final, foi adicionada como carga às massas cerâmicas de cinza serragem de madeira (SM) com densidade aparente igual a 250 kg/m³, umidade natural de 10% e tamanho médio de partícula de cerca de 0,35 mm. A quantidade de serragem de madeira foi definida experimentalmente em valores tais que evitassem a laminação na etapa de conformação e sinterização. A adição máxima adotada foi de 15% em peso.

2.1.4. Fundente

Somente nas massas cerâmicas de cinzas prensadas foi acrescentado o fundente bentonita (B). A bentonita é um silico-aluminoso constituído de óxidos fundentes de sódio (1,7%), ferro (1,25%) e magnésio (2,81%). Sua presença é benéfica na composição da massa porque o óxido de sódio presente em sua composição é um composto que se caracteriza por absorção e inchamento intenso, fato que ajuda na formação dos poros. Além disto, quando umedecida a bentonita torna-se plástica propiciando a massa maior trabalhabilidade e conformação. A quantidade máxima de bentonita adicionada foi de 10% em peso.

2.2. Procedimento experimental

Para obtenção dos isolantes térmicos de cinzas foram elaboradas formulações de massas constituídas de cinza de casca de arroz, aditivos plastificantes e ligantes, serragem de madeira, fundente e água (Tabela 4), que foram conformados por extrusão e prensagem.

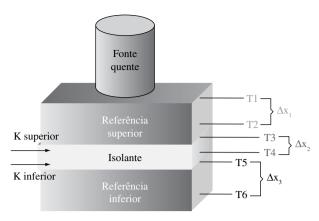
Considerando a especificidade de cada processo de conformação, nas massas cerâmicas extrudadas, em virtude da possível redução do tamanho do poro motivado pela quebra da partícula de cinza, ocorrida durante a mistura e injeção através da extrusora, foi adicionada

Tabela 4. Formulações de massas dos isolantes térmicos de cinzas (% em peso).

	Formulações	Aditivos				Н,О	
			PS1	PVA	SM	В	
Extrusão	E1	82	3	-	15	-	75
	E2	85	3	-	12	-	60
	E3	87	3	-	10	-	50
	E4	90	3	-	7	-	50
	E5	92	3	-	5	-	50
Prensagem	P1	65	-	10	15	10	30
	P2	68	-	10	12	10	30
	Р3	71	-	10	9	10	25
	P4	74	-	10	6	10	25
	P5	77	-	10	3	10	25

serragem de madeira para aumentar a porosidade final. Nas massas cerâmicas prensadas, além da serragem de madeira, para melhorar a fundência, adicionou-se bentonita comercial.

As quantidades dos constituintes das massas cerâmicas foram determinadas em peso e a proporção de água utilizada calculada em relação ao valor de massa sólida (cinza de casca de arroz + aditivo + carga + fundente). A homogeneização das massas ocorreu com o auxílio de um misturador mecânico (batedeira), por um período de 15 minutos. As massas prensadas devido a presença da bentonita foram menos umidificadas que as extrudadas.


Os corpos-de-prova utilizados foram moldados no formato retangular, dimensões de 10 mm x 20 mm x 60 mm. Especificamente para o ensaio de resistência mecânica à compressão foram moldados corpos-de-prova cilíndricos, com altura e diâmetro igual a 25 mm. A perda inicial de umidade das peças conformadas, extrudadas e prensadas, ocorreu ao ar livre, sem exposição direta ao sol, por um período de no mínimo 7 dias.

Os isolantes extrudados foram sinterizados a temperatura de 1350 °C e os prensados, devido a maior presença de óxidos fundentes, a temperatura de 1250 °C. O patamar de queima para ambos foi de 3 horas. A curva de aquecimento foi de 250 °C/h e o resfriamento livre em ambas situações.

A caracterização física e mecânica dos isolantes térmicos obtidos foi feita a partir de ensaios padronizados e procedimentos laboratoriais que definiram a porosidade aparente (ASTM C 373/94), densidade aparente (ASTM C 134/95), condutividade térmica (ASTM E 1225/87) e resistência à compressão (ASTM C 773/88). A microestrutura foi investigada por microscopia eletrônica de varredura (MEV).

A técnica experimental utilizada para determinação da condutividade térmica dos isolantes foi a do fluxo quente, teste padrão para condutividade térmica de sólidos, que utiliza o processo de condução de calor unidirecional, em regime estacionário, em um sistema de paredes compostas ou sanduíche (ASTM E 1225/87). A metodologia proposta baseia-se em um procedimento experimental específico, partindo da montagem de uma fonte quente que alimenta referências acopladas à amostra a ser testada (Figura 4).

No cálculo da condutividade térmica, utilizou-se a equação fundamental de Fourier que determina a condutividade térmica para um sistema sanduíche (Equação 1) que, resumidamente, pode ser representada pela Equação 2. O emprego das Equações 1 e 2 reduz a propagação de erros em medidas experimentais, visto que deter-

Figura 4. Esquematização do aparato experimental adotado para medição da condutividade térmica dos isolantes de CCA e do comercial fabricado a partir de sílica diatomácea.

mina de forma direta o valor da condutividade térmica sem precisar determinar outras propriedades térmicas, tais como o calor específico e difusividade térmica dos materiais.

$$Q = \frac{k_1(T_1 - T_2)}{\Delta x_1} = \frac{k_2(T_3 - T_4)}{\Delta x_2} = \frac{K_3(T_5 - T_6)}{\Delta x_3}$$
(1)

$$k_2 = \frac{k_1 (T_1 - T_2) \Delta x_2}{(T_3 - T_4) \Delta x_1}$$
 (2)

onde:

 $Q = \text{fluxo de calor unidirecional } (W/m^2);$

k₁ = condutividade térmica do material referência 1 (W/mK);

k₂ = condutividade térmica do material referência 2 (W/mK);

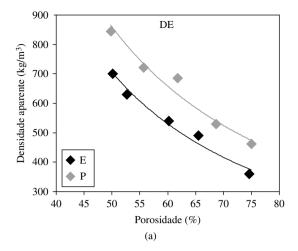
 $T_{1.6}$ = temperatura da interface dos termopares 1,2,3,4,5,6, respectivamente (K);

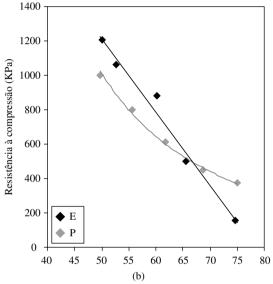
 Δx_1 e Δx_3 = distância dos termopares no material usado como referência (m); e

 Δx_2 = distância dos termopares no material testado (m). Outros modos de transferência de calor atuantes no sistema (convecção, por exemplo) não foram considerados.

Para cada temperatura de trabalho, o cálculo da condutividade foi realizado a partir da leitura das temperaturas obtidas nos seis termopares (T1, T2, T3, T4, T5 e T6) que, aplicadas à Equação 2, deram origem a dois valores de condutividade térmica para a amostra testada (Figura 4), o K_{superior} e o K_{inferior} , representados respectivamente pelas Equações 3 e 4.

$$K_{\text{superior}} = \frac{k_{\text{l}} (T_{\text{l}} - T_{\text{2}}) \Delta x_{\text{2}}}{(T_{\text{3}} - T_{\text{4}}) \Delta x_{\text{l}}}$$
(3)

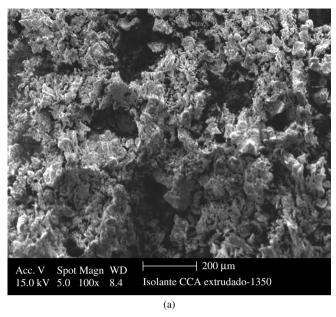

$$K_{\text{inferior}} = \frac{k_3 (T_5 - T_6) \Delta x_2}{(T_3 - T_4) \Delta x_3}$$
 (4)

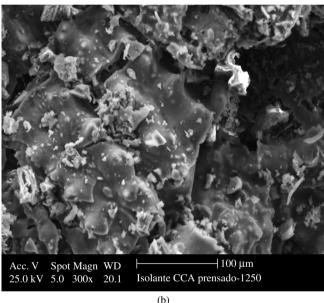

3. Resultados e Discussão

3.1. Porosidade, densidade e resistência à compressão

As Figuras 5a e 5b apresentam os resultados de densidade aparente, porosidade e resistência à compressão dos isolantes térmicos de cinzas de casca de arroz, extrudados e prensados, correlacionados entre si. Os valores representam a média de 20 amostras.

Como pode-se ver na Figura 5a, os isolantes térmicos de cinzas de casca de arroz apresentam baixos valores de densidade aparente (350 a 850 kg/m³), conseqüência da elevada porosidade obtida,




Figura 5. Propriedades físicas e mecânicas dos isolantes térmicos de cinza de casca de arroz, extrudados (E) e prensados (P).

superior para ambos a 50%. Os isolantes prensados apresentam-se mais densos que os extrudados.

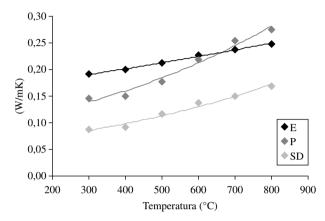
Quanto a resistência à compressão, como mostra a Figura 5b, os isolantes térmicos de cinza de casca de arroz também apresentam baixos valores. Nestes é possível observar-se que quando a porosidade varia no intervalo de 50 a 65%, os isolantes extrudados, apresentam-se mais resistentes que os prensados e quando esta é maior que 65%, inverte-se a situação, isto é, os prensados resistem mais que os extrudados. Aparentemente, nesse intervalo (> 65%), o aumento da porosidade dos isolantes prensados ocorre com o aumento do tamanho do poro, aumentando assim o tamanho do maior defeito, controlador da resistência mecânica. Isso para os isolantes térmicos prensados seria mais válido do que para os isolantes extrudados, onde o aumento da porosidade é devido a um maior número de poros.

Ao observar-se a microestrutura destes isolantes, verifica-se que o menor tamanho de partícula do isolante térmico extrudado resulta em um acomodamento irregular destas e uma maior concentração de poros interligados (Figura 6a). Esta situação incide em maior resistência mecânica, visto que possibilita melhor distribuição de cargas e redução dos efeitos diretos e propagação de trincas. De fato, é de se esperar que quando da pré-extrusão, as partículas da massa cerâmica sejam levadas a uma cominuição no processo de mistura no fuso da extrusora. Já nos prensados, onde pela microestrutura constata-se que as partículas constituintes são maiores que as dos extrudados, levando

Figura 6. Microestruturas dos isolantes térmicos de cinza de casca de arroz. a) extrudado; e b)prensado.

a um acomodamento regular das partículas, poros de maior tamanho e menor concentração de poros interligados (Figura 6b). Como resultado, estes isolantes apresentam menor resistência mecânica e maiores efeitos diretos de cargas e de propagação de trincas.

3.2. Condutividade térmica


A condutividade térmica dos isolantes de cinza de casca de arroz foi medida conjuntamente com a do isolante térmico comercial fabricado a partir de sílica diatomácea com porosidade similar. A Tabela 5 apresenta as propriedades físicas dos isolantes investigados.

As curvas de condutividade térmica dos isolantes analisados são apresentadas na Figura 7. Pelo gráfico desta figura pode-se observar que até a temperatura de 700 °C o isolante térmico de cinzas prensado apresenta menor condutividade térmica que o extrudado. Também verificase que os isolantes de cinzas de casca de arroz, ainda que apresentem baixos valores, apresentam significativamente maior condutividade térmica do que os fabricados a partir de sílica diatomácea.

Tabela 5. Isolantes térmicos de cinzas extrudado (E) e prensado (P) e de sílica diatomácea (SD).

Propriedades	C	SD*	
	E	P	
D_{ap} (kg/m ³)	660,00	464,00	392,00
Porosidade (%)	70,00	75,00	73,00
Resistência à compressão (kgf/cm²)	6,6	3,9	8,0

Fonte: *Dados fornecidos pelo fabricante.

Figura 7. Valores de condutividades térmicas dos isolantes térmicos de cinzas, extrudados (E) e prensados (P), e de sílica diatomácea (SD).

A condutividade térmica de um corpo cerâmico depende da condutividade das fases presentes em sua microestrutura. Entre estas, a fase "poro" desempenha um papel fundamental. É bem sabido que poros maiores servem de refletores para a radiação incidente em suas paredes internas, com isso conduzindo calor com muita eficiência por radiação. Porém, somente a temperaturas onde o fenômeno da radiação como mecanismo de condução térmica atue preponderantemente, isto é, acima de 800 °C. Abaixo desta temperatura, a condução é o mecanismo principal, e os grandes vazios dos poros maiores atuam então como barreira ao transporte de calor.

A análise microestrutural dos isolantes fabricados com cinzas e do isolante térmico fabricado a partir de sílica diatomácea não permite imputar somente ao tamanho de poros dos três isolantes térmicos ensaiados, a diferença em condutividade térmica. Como pode-se ver nas Figuras 6a e 6b, a microestrutura dos isolantes térmicos de cinzas apresenta-se com uma fase porosa bastante disseminada. Os poros presentes são de tamanho e formato variados, função da composição de massa e método de conformação adotado. Os isolantes térmicos de cinzas extrudados contêm poros menores e de formato mais arredondados e os prensados maiores e mais alongados. Eventualmente por esse motivo, uma menor condutividade térmica para o isolante térmico extrudado comece a se manifestar a temperaturas onde a condução por radiação se intensifique (ver Figura 7).

Outra fase presente na microestrutura dos corpos cerâmicos que interfere na condutividade térmica é a fase vítrea (estrutura amorfa). Esta é observada ao redor das partículas na microestrutura dos isolantes térmicos prensados (Figura 6b). Tal fato justifica a menor condutividade observada nestes isolantes.

Para efeito de comparação, a Figura 8 mostra a microestrutura do isolante comercial fabricado a partir de sílica diatomácea. Como pode-se notar, os poros presentes são pequenos, em grande quantidade, arredondados e distribuidos aleatoriamente na superfície. A partícula de sílica deste isolante térmico é finamente porosa e diseminada, portanto profundamente desorganizada.

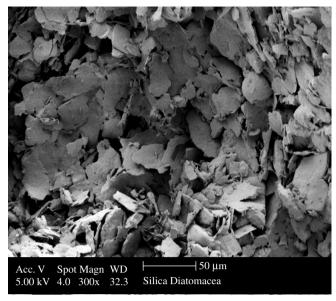


Figura 8. Microestrutura do isolante térmico comercial fabricado a partir de sílica diatomácea.

Assim, os poros explicariam parte da condutividade térmica dos isolantes térmicos investigados, porém, as outras fases presentes devem fornecer subsídios mais fortes para o entendimento da variação de condutividade térmica verificado. De fato, partindo-se da premissa que o mecanismo principal de condutividade térmica nos materiais cerâmicos é pela vibração da rede (transporte de calor por fônons), a desorganização da estrutura cristalina das fases presentes desempenha papel fundamental: quanto mais desorganizada esta é, menor é a condutividade térmica. Para essa desorganização contariam tamanho de cristalito, tamanho de grão, a presença de estrutura amorfa e descontinuidades.

4. Conclusões

A partir dos resultados obtidos pode-se inferir as seguintes conclusões:

 Isolantes térmicos podem ser obtidos a partir de cinza de casca de arroz, através dos processos de conformação por extrusão

- e prensagem, sendo o uso de aditivos e agentes fundentes indispensável;
- Os isolantes térmicos obtidos a partir de cinza de casca de arroz apresentam elevada porosidade e, como já esperado, baixos valores de densidade aparente e resistência à compressão:
- Os isolantes térmicos de cinza de casca de arroz extrudados apresentam maior resistência mecânica devido ao menor tamanho de sua partícula, ao acomodamento irregular destas e uma maior concentração de poros interligados;
- Os isolantes térmicos de cinza de casca de arroz prensados apresentam menor condutividade térmica do que os extrudados.
- A presença de fase vítrea, observada na microestrutura dos isolantes térmicos de cinzas de casca de arroz prensados é fator decisivo para a sua menor condutividade térmica;
- Os valores de condutividade térmica dos isolantes de cinza de casca de arroz são baixos, porém maiores que os do isolante térmico comercial, fabricado a partir de sílica diatomácea, utilizado como referência; e
- Os poros de maior tamanho e formato variado justificam a maior condutividade térmica dos isolantes térmicos de cinzas em relação ao fabricado a partir de sílica diatomácea.

Referências

- Bartha, P. Biogenous silicic acid: A growing raw material. Keramische Zeitschrift, Jahrgang, v. 47, n. 10, p. 780-785, 1995.
- Cunha, J. C. C., Canepa, E. M. Aproveitamento energético da casca de arroz. Porto Alegre, RS: Fundação Ciência e tecnologia, CIENTEC. 1986. 169 p.
- Guedert, R. L. Estudo da viabilidade técnica e econômica do aproveitamento da cinza de casca de arroz como material pozolanico. 1989. 156f. Dissertação (Mestrado em Engenharia) - Faculdade de Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 1989
- Incropera, F. P., Witt D. P. Fundamentos de transferência de calor e de massa. 4. ed. Rio de Janeiro: LTC Editora, 1998. 886 p.
- Santos, W. N. Efeito da transferência de massa na condutividade térmica de materiais cerâmicos porosos. in: 40° CONGRESSO BRASILEIRO DE CERÂMICA. Criciúma, Santa Catarina, 1996. Anais... (referência 092)
- Virkar, A. N. Rice husk ash: Na asterisk ceramic raw material. Revista Materials Science Centre, Kharagpur, Indian Institute of Technology, v. 28, n. 12, p. 254-258, 1986.