

Reaproveitamento de Gases de Exaustão do Forno para a Secagem de Barbotina

Cristian de March Bez Fontanaa, Oscar R. K. Montedob*

^aCeusa Revestimentos Cerâmicos, Rodovia SC 446, Km 17, 17000 Urussanga - SC, Brasil ^bUnidade Acadêmica de Ciências, Engenharias e Tecnologia – UNACET, Universidade do Extremo Sul Catarinense – UNESC, Av. Universitária, 1105, Bairro Universitário, 88806-000 Criciúma - SC, Brasil *e-mail: oscar.rkm@gmail.com

Resumo: Para a produção de revestimentos cerâmicos, dispõe-se basicamente de dois processos de moagem: o processo via seca e o processo via úmida. O grande problema da moagem via úmida é seu elevado consumo energético, quando comparado ao consumo energético do processo de moagem via seca, sobretudo se um gás combustível, como o gás natural, for empregado como fonte de energia para o processo de secagem da barbotina. Diante deste quadro, a busca pelo aumento da eficiência do processo passa a ser uma prerrogativa para a sustentabilidade do negócio. Sendo assim, neste trabalho foi avaliada a economia obtida pelo emprego dos gases quentes gerados na queima em um forno cerâmico, para a secagem de barbotina no processo de produção de porcelanato esmaltado da Cerâmica Novagres. Desta forma, foi possível obter uma redução de 17% no consumo de gás natural.

Palavras-chave: energia, eficiência energética, reaproveitamento, atomização, economia.

1. Introdução

Indústrias cerâmicas que produzem revestimentos pelo método da moagem por via úmida apresentam um consumo energético específico superior àquelas empresas que optaram pelo processo por via seco, devido à necessidade de secagem da barbotina, que pode representar até 418 kcal.kg⁻¹ de pó atomizado produzido¹.

Atualmente, para que se obtenha a sustentabilidade de um negócio, uma empresa precisa aprimorar constantemente sua linha de produtos e seus processos. Desta forma, cada vez mais as empresas, em especial as indústrias cerâmicas, têm incorporado conceitos atuais de eco-eficiência, tais como o de Produção mais Limpa e o de Eficiência Energética. A Produção mais Limpa (P + L) trata da busca contínua da eficiência do processo, por meio de ações preventivas que permitam minimizar o impacto de setor produtivo no meio ambiente, como o melhor aproveitamento dos insumos para reduzir a emissão de resíduos, a substituição de insumos para se reduzir os níveis de poluição e/ou o reaproveitamento dos resíduos gerados. Isto envolve o emprego de estratégias, práticas e condutas econômicas, ambientais e técnicas². A Eficiência Energética envolve a adequada gestão da energia como forma de se atingir níveis mais reduzidos de consumo de energia para um mesmo nível de volume produzido³.

Estes programas contribuem para a obtenção de produtos com qualidade superior a um preço atrativo. Além disso, estes programas permitem às indústrias responsáveis social e ambientalmente reduzirem suas taxas de emissão de gases do efeito estufa⁴.

Na indústria cerâmica a situação não é diferente, onde há várias ações relacionadas à eficiência energética⁵⁻⁸. Por outro lado, com o surgimento de novas tecnologias, as empresas que dispõem de equipamentos modernos e métodos de produção atualizados possuem vantagens sobre as demais. A Cerâmica Novagres tem avançado neste caminho, ao buscar constantemente a inovação de seus produtos e a otimização de seus processos, como forma de se diferenciar no mercado.

Neste contexto, este trabalho avalia o reaproveitamento de gases quentes do forno para a secagem da barbotina no processo de atomização, a fim de promover a diminuição do consumo energético deste processo.

2. Materiais e Métodos

2.1. Materiais

As atividades foram realizadas na Cerâmica Novagres, em Urussanga (SC). O atomizador era de fabricação Barbieri Tarozzi, modelo SD 6000 – AT, com capacidade produtiva de 16 t.h⁻¹ de pó atomizado, cuja fonte de energia para secagem é um queimador que opera com gás natural (GN). Além disso, foi empregado um sistema de reaproveitamento dos gases quentes provenientes do sistema de exaustão principal do forno (marca Barbieri Tarozzi, modelo B 2650 P 60-67,5 SX L148740). Este sistema é composto de uma tubulação ligando o sistema de exaustão dos gases quentes ao queimador do atomizador, com extensão de 120 m e diâmetro interno de 900 mm. Para o levantamento dos dados de produção, foram empregados:

- picnômetro, para a determinação da densidade da barbotina;
- viscosímetro tipo Copo Ford nº 4, para determinação do tempo de escoamento da barbotina;
- balança marca Ohaus, modelo adventurer, com capacidade de 4 kg, para determinação da densidade da barbotina;
- balança marca Toledo, modelo 2180, com capacidade de 2500 kg, para determinação da vazão mássica pó atomizado e finos produzidos;
- balança marca Ohaus, modelo MB 35, com lâmpada de aquecimento e capacidade de 35 g, para determinação de umidade do pó atomizado;
- pirômetro óptico marca Kiltherm, modelo 500, para realizar as medidas de temperatura do pó atomizado e dos finos provenientes do sistema de reaproveitamento;

- cronômetro da marca Technos, para auxiliar na determinação da vazão mássica de pó atomizado e finos produzidos;
- tubo de Pitot, para a determinação da velocidade dos gases quentes provenientes do forno;
- manômetro digital da marca Gulton do Brasil Ltda., utilizado para determinar a pressão estática dos gases do sistema de reaproveitamento de gases quentes; e
- termômetro digital da marca Confor, para determinação da temperatura dos gases do sistema de reaproveitamento de gases quentes.

2.2. Métodos

Inicialmente foi avaliada a estabilidade funcional do sistema de atomização, pois qualquer levantamento realizado durante um período de instabilidade resultaria na determinação de dados incompatíveis com a produtividade real do equipamento. Em seguida, foi determinada a densidade e a viscosidade da barbotina no tanque de serviço do atomizador. Após isto, foram medidas as vazões de pó atomizado e de finos produzidos no atomizador. Para isto, foram pesados previamente um bag vazio e um pallet. A seguir, foram coletados e pesados separadamente o pó atomizado e os finos produzidos em um intervalo de tempo determinado, para o cálculo das correspondentes vazões mássicas. Amostras destas coletas foram empregadas para a determinação das respectivas umidades. Estas informações foram empregadas no balanço de massa para determinação da vazão de água evaporada. Para a realização do balanço de massa, considerou-se que o equipamento estivesse funcionando em regime permanente, isto é, sem acúmulo de massa no sistema. Segundo Himmelblau9:

Entrada total de massa no sistema = Saída total de massa do sistema

Esta equação, aplicada a um atomizador, permite obter-se a Equação 1:

$$E = S = S_{p\acute{o}\ atom} + Q_{m\ \acute{a}gua\ evap} \tag{1}$$

onde:

E: vazão mássica de entrada de barbotina no atomizador (kg.h-1);

S: vazão mássica de saída de massa no atomizador (kg.h⁻¹);

 $S_{\mbox{\scriptsize p\'o}\mbox{\scriptsize atom}}$: vazão mássica de saída de pó atomizado do atomizador (kg.h-1); e

 $Q_{m \, \acute{a}gua \, evap}$: vazão mássica de água evaporada durante o processo de atomização (kg.h^-1).

Considerando-se o balanço de massa para a água, sem acúmulo de água no sistema e sem reação química, tem-se que:

Entrada de massa de água no sistema = Saída de massa de água do sistema

Em termos práticos, devemos considerar que toda a água de entrada do atomizador se dá por intermédio da barbotina, suspensão esta formada por aproximadamente 60% de sólidos e 40% de água. Desta forma, sabendo-se a quantidade de barbotina que entrou e o percentual de líquidos desta, pode-se determinar a quantidade de água que entrou. Para que seja possível determinar a quantidade de água de saída, deve-se considerar a quantidade residual de água no pó atomizado e nos finos. Assim, conhecendo-se o percentual de água contida nestes e a vazão mássica de cada um, pode-se determinar a quantidade de água contida na massa atomizada. Desta forma, obtém-se a Equação 2:

$$U_b\% \times E = U_{p\acute{o}\ atom}\% \times S_{p\acute{o}\ atom} + Q_{m\ \acute{a}gua\ evap} \tag{2}$$

onde:

U,%: umidade percentual de água contida na barbotina (%);

E: vazão mássica de entrada de barbotina no atomizador (kg.h⁻¹);

 $U_{m \text{ atom}}$ %: umidade percentual de água contida na massa atomizada (%);

 $S_{p \delta \; \text{atom}};$ vazão mássica de saída de pó atomizado do atomizador (kg, h $^{\!-1}$); e

 $Q_{_{m \; \acute{a}gua\; evap}}$: vazão mássica de água evaporada durante o processo de atomização (kg.h^-l).

A combinação das Equações 1 e 2 permite obter-se a expressão para o cálculo da vazão de água evaporada no atomizador (Equação 3):

$$Q_{m \text{ água evap}} = S_{p \acute{o} \text{ atom}} \left(\frac{U_b \% - U_{p \acute{o} \text{ atom}} \%}{100 - U_{p \acute{o} \text{ atom}} \%} \right)$$
(3)

Paralelamente, foi coletada a informação de consumo de GN no queimador do atomizador relativo à produção no intervalo de tempo medido. A vazão volumétrica do GN foi primeiramente normalizada de acordo com a Equação 4º:

$$\frac{Q_{GN} = Q_{medidor} \times 273,15}{\left(273,15 + T_g\right)} \times \frac{\left(1013 + p_g\right)}{1013} \tag{4}$$

onde

Q_{GN}: vazão volumétrica normalizada do gás (Nm³.h⁻¹);

Q_{medidor}: vazão volumétrica do gás (m³.h⁻¹);

T_o: temperatura do gás (°C); e

p.: pressão estática do gás (mbar).

Considerando-se o poder calorífico inferior (PCI) do GN, pôde-se a partir da Equação 4, calcular-se a quantidade de energia empregada no atomizador para a secagem da barbotina nas condições avaliadas. Esta sequência operacional foi repetida mais 4 vezes, em dias diferentes, para poder-se obter os dados de produção e consumo de GN antes do reaproveitamento de gases quentes do forno. A mesma sequência operacional foi executada para a situação com reaproveitamento de gases quentes do forno. Entretanto, também foi medida a vazão destes gases quentes e sua temperatura, com o objetivo de se determinar o conteúdo calorífico fornecido ao atomizador. Primeiramente, foi determinada a velocidade dos gases quentes da chaminé do forno, com o auxílio de um tubo de Pitot, por meio da Equação 5º:

$$v = k \sqrt{\frac{2\Delta p}{\rho}} \tag{5}$$

onde:

v: velocidade dos gases (m.s⁻¹);

k: constante (com valor compreendido entre 0,98 e 1);

Δp: pressão dinâmica (pressão total – pressão estática) determinada pelo tubo de Pitot (Pa); e

ρ: massa específica da corrente gasosa (kg.m⁻³).

Tendo-se a velocidade dos gases quentes, pôde-se determinar a vazão volumétrica destes gases, utilizando-se a Equação 69:

$$Q = v \times A \tag{6}$$

onde

Q: vazão volumétrica da corrente gasosa (m³.s⁻¹);

v: velocidade da corrente gasosa (m.s⁻¹); e

A: área interna do duto (m2).

A seguir, a vazão volumétrica dos gases quentes calculada a partir da Equação 6 foi normalizada, empregando-se a Equação 4.

A vazão normalizada de gases quentes reaproveitados do forno foi, então, empregada para se calcular a quantidade de energia transferida à câmara de atomização, por meio da Equação 79:

$$\Delta H = Q_{GN} \times c_p \times \Delta T \tag{7}$$

onde

 ΔH : quantidade de energia fornecida pelo sistema de reaproveitamento de gases quentes (kcal.h⁻¹);

 Q_{GN} : vazão volumétrica normalizada dos gases quentes (Nm³.h-¹);

 c_p : calor específico dos gases quentes à pressão constante (kcal.Nm $^{-3}$.K $^{-1}$); e

 ΔT : diferença entre a temperatura de entrada e a temperatura de saída dos gases quentes no atomizador (K).

3. Resultados e Discussão

Um atomizador deverá seguir os seguintes requisitos para ter o melhor rendimento¹⁰:

- fornecer um produto com umidade constante;
- oferecer um produto com tamanho de grãos constantes e reguláveis;
- possuir baixo custo de instalação;
- ser econômico em relação aos custos de manutenção; e
- efetuar uma descarga ao ar livre que respeite as leis ambientais.

Além disso, pode-se dizer que possuir um custo operacional relativamente baixo é condição necessária para se ter um custo final compatível com a disposição de pagamento do mercado. Sabe-se que na Itália os gastos com energia chegam a 23% do custo médio total de produção, evidenciando assim que o custo energético é um dos que mais impactam sobre o preço do produto acabado¹¹. Com base nisto, a gestão dos recursos energéticos torna-se estratégica para a sustentabilidade do negócio.

As Tabelas 1 e 2 mostram os dados de produção do atomizador antes e depois da instalação do sistema de reaproveitamento de gases quentes do forno. As Tabelas 1 e 2 mostram que o equipamento operou com elevada estabilidade, dado o baixo coeficiente de variação obtido. A maior variação observada foi em relação aos finos, entretanto sua vazão mássica é muito baixa em relação à vazão mássica de pó atomizado. Além disso, pode-se perceber a redução no consumo de GN devido ao reaproveitamento de gases quentes do forno. Entretanto, estes valores precisam ser normalizados, cujos resultados serão mostrados a frente.

Os valores apresentados nas Tabelas 1 e 2 foram empregados no cálculo da vazão mássica de água evaporada, como é mostrado na Tabela 3. A Tabela 3 confirma a estabilidade nos dados apresentados,

exceto para a umidade dos finos, que devido à reduzida granulometria, estão mais susceptíveis à variação de umidade. Mas é importante salientar a vazão mássica de água evaporada, obtida por meio das equações de balanço de massa (Equação 3).

A vazão mássica média de água evaporada com o reaproveitamento de gases quentes do forno é um pouco superior à vazão mássica sem o reaproveitamento. Isto poderia ser explicado pelo fato de que a vazão total de gases na câmara de atomização foi aumentada com o aproveitamento de gases do forno, que deve ter facilitado a vaporização da água da barbotina.

Entretanto, a variação mais significativa observada com o reaproveitamento de gases quentes do forno foi a redução do consumo de GN (Tabela 4). Normalizando os valores de consumo médio de GN (Tabelas 1 e 2) e empregando-se o valor de PCI igual a 9.194 kcal.Nm⁻³ ¹², obtém-se uma redução de 88 Nm³.h⁻¹, ou 17%, que corresponde a 809.054 kcal.h⁻¹.

Onde:

U_b: umidade da barbotina (%);

Q_{m pó}: vazão mássica do pó (kg.h⁻¹);

U_{pó}: umidade do pó atomizado (%);

 $Q_{m \text{ finos}}$: vazão mássica de finos (kg.h⁻¹);

U_{finos}: umidade dos finos (%);

 $Q_{m p o}^{-} + Q_{m finos}$: vazão mássica total produzida pelo atomizador (kg.h⁻¹):

U_{atom}: umidade do pó atomizado final (pó atomizado + finos)

 $Q_{a\; evap}$: vazão mássica de água evaporada (kg.h $^{-1}$).

Onde

T_o: temperatura do gás (°C);

p.: pressão do gás (mbar);

Q: vazão volumétrica de gás (m³.h⁻¹);

Q_{No}: vazão volumétrica normalizada do gás (Nm³.h-1); e

Consumo Específico: consumo específico de combustível (Nm³.kg⁻¹ de água evaporada ou kcal.L⁻¹ de água evaporada).

Além disso, o consumo específico de GN no atomizador foi reduzido de 501 para 419 kcal.kg⁻¹ de pó atomizado, cujo valor pode ser considerado muito bom obtido por um atomizador para secagem de barbotina¹. Por outro lado, o valor do consumo específico se aproximou bastante da entalpia de vaporização da água (540 kcal.L⁻¹ de água evaporada).

O cálculo da economia alcançada com o sistema de reaproveitamento dos gases quentes pode ser feito com base na quantidade de energia deixada por esta corrente no atomizador, e que levou à redução do consumo de combustível.

Considerando-se o valor da massa específica da corrente gasosa de 1,3 kg.m⁻³ a temperatura de 261 °C¹³, pôde-se calcular a velocidade dos gases quentes por meio da Equação 1, cujo valor

Tabela 1. Resultados obtidos sem o reaproveitamento dos gases quentes do forno.

Levantamentos	Produção de pó atomizado (kg.h ⁻¹)	Produção de finos (kg.h ⁻¹)	Consumo de gás (m³.h-¹)	Consumo específico de GN (m³.t-1 de massa produzida)
1	9825	654	540	54,96
2	9660	660	536	55,48
3	10.440	654	536	51,34
4	9675	645	540	55,81
5	9855	714	542	55,00
Média	9892	665	539	54,52
Desvio padrão	319,0	27,69	2,68	1,81
Coeficiente de variação	3,22%	4,16%	0,49%	3,32

Fonte: Autor, 2009.

Tabela 2. Resultados obtidos após o reaproveitamento de gases quentes do forno.

Levantamentos	Produção de pó atomizado (kg.h ⁻¹)	Produção de finos (kg.h ⁻¹)	Consumo de gás (m³.h-1)	Consumo específico de GN (m³.t-1 de massa produzida)
6	9855	735	450	45,66
7	9795	810	451	46,04
8	9900	705	447	45,15
9	9840	750	447	45,43
Média	9848	750	449	45,57
Desvio padrão	43,30	44,16	2,06	0,37
Coeficiente de variação	0,44%	5,88%	0,46%	0,82

Fonte: Autor, 2009.

Tabela 3. Resultados obtidos com a realização do balanço de massa antes e depois da instalação do reaproveitamento de gases quentes.

		U _b (%)	$\begin{array}{c} \mathbf{Q}_{\mathrm{m}\mathrm{p}\acute{\mathrm{o}}} \\ (\mathbf{kg}.\mathbf{h}^{-1}) \end{array}$	$U_{p\delta} \ (\%)$	$Q_{m \text{ finos}}$ $(kg.h^{-1})$	U _{finos} (%)	$Q_{m p \acute{o}} + Q_{m finos}$ $(kg.h^{-1})$	U _{atom} (%)	$\begin{array}{c} \mathbf{Q}_{\text{a evap}} \\ (\mathbf{kg.h^{-1}}) \end{array}$
	1	39,56	9825	5,7	654	1,0	10479	5,4	5923
	2	40,08	9660	5,6	660	0,9	10320	5,3	5995
Antes	3	39,58	10440	5,8	654	0,9	11094	5,5	6252
	4	40,74	9675	6,0	645	1,2	10320	5,7	6104
	5	40,80	8955	5,9	714	1,0	9669	5,6	5756
	6	40,94	9855	5,8	735	1,1	10590	5,5	6358
Danais	7	40,90	9795	5,6	810	1,2	10605	5,2	6398
Depois	8	41,30	9900	5,8	705	1,0	10605	5,5	6464
	9	40,86	9840	6,5	750	1,2	10590	6,1	6222
Média		40,52	9772	5,85	703	1,05	10475	5,53	6163
Desvio-padrão		0,63	381,92	0,27	55,70	0,12	377,67	0,26	237,22
Coeficiente de variação		1,55%	3,90%	4,70%	7,92%	11,77%	3,60%	4,70%	3,84%

Fonte: Autor, 2009.

Tabela 4. Consumo energético do sistema de atomização antes e depois da instalação do sistema de reaproveitamento de gases quentes do forno.

		T _g (°C)	p _g (mbar)	$\begin{array}{c} Q_{\rm g} \\ (m^3.h^{-1}) \end{array}$	$Q_{Ng} $ $(Nm^3.h^{-1})$	CE (Nm³g.kg ⁻¹ água ev.)	CE médio (Nm³g.kg ⁻¹ água ev.)	CE (kcal.L ⁻¹ água ev.)	CE médio (kcal.L ⁻¹ água ev.)
Antes	1	21	40	540	521	0,088	0,087	792	780
	2	21	40	536	517	0,086		777	
	3	21	40	536	517	0,083		745	
	4	21	40	540	521	0,085		769	
	5	21	40	542	523	0,091		818	
Depois	6	22	40	450	433	0,068	0,068	613	612
	7	22	40	452	435	0,068		612	
	8	22	40	447	430	0,067		599	012
	9	22	40	447	430	0,069		622	

Fonte: Autor, 2009.

encontrado foi de $13,39~\text{m.s}^{-1}$. Com este resultado e utilizando-se a Equação 2, determinou-se a vazão volumétrica da corrente gasosa, igual a $8,52~\text{m}^3.\text{s}^{-1}$.

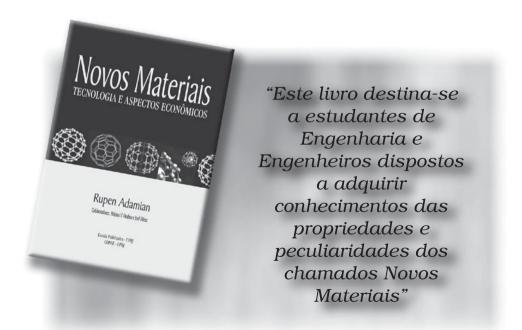
Normalizando-se, então, esta vazão volumétrica através da Equação 3, chegou-se ao valor da vazão normalizada de 15.835 Nm³.h⁻¹, para uma pressão estática da corrente gasosa (pg) de 100 mm ca (= 9,81 mbar) e uma temperatura (Tg) de 261 °C.

Com o valor da vazão normalizada de gases quentes do forno, pôde-se, então, determinar a quantidade de energia empregada

por este para a secagem da barbotina (Equação 4). Considerandose o valor do calor específico à pressão constante dos gases quentes do forno como sendo 0,341 kcal.Nm⁻³.K⁻¹ à temperatura de 261 °C¹³, obteve-se o valor de 795.912 kcal.h⁻¹. Este valor, portanto, representa a energia economizada no atomizador devido à corrente de gases quentes reaproveitados do forno. Como já foi demonstrado, este sistema de reaproveitamento de gases quentes proporcionou uma economia de 88 Nm³.h⁻¹ de GN ou 809.054 kcal.h⁻¹.

Portanto, a economia calculada a partir da redução do consumo de GN foi de 809.054 kcal.h⁻¹, enquanto que a economia calculada a partir da energia dissipada pelos gases quentes do forno foi de 795.912 kcal.h⁻¹. A diferença entre estes valores foi de apenas 1,62%, que pode ser considerada muito pequena com base na natureza das medidas e nos instrumentos empregados

Durante a realização dos levantamentos, que permitiram efetuar o balanço de massa e energia do atomizador, pôde-se observar uma considerável estabilidade do sistema, tanto por parte do setor de preparação de massa que fornece a barbotina, quanto pelo processo de atomização. Além disso, o reaproveitamento de gases quentes da exaustão do forno não provocou qualquer modificação nas características do pó atomizado. Por outro lado, a vazão mássica de água evaporada aumentou um pouco, provavelmente devido ao maior volume de gases quentes para secagem na câmara de atomização.


Com relação à avaliação econômica, a implantação do sistema de reaproveitamento de gases quentes permitiu uma economia de gás natural de R\$ 63.468,00 por mês. Considerando-se que o investimento para a instalação deste sistema de reaproveitamento de gases quentes foi de R\$ 450.000,00, o tempo necessário para o retorno deste investimento foi de apenas 7 meses. Importante salientar que este retorno ao investimento foi possível devido ao elevado preço do combustível empregado no atomizador.

4. Conclusão

Um sistema de reaproveitamento de gases quentes provenientes da exaustão de um forno da Cerâmica Novagres foi implantado para permitir o aumento de eficiência energética do atomizador. Com o reaproveitamento destes gases quentes para a secagem da barbotina, observou-se uma economia de 88 Nm³.h⁻¹ de GN, sem perda de qualidade do pó atomizado produzido e com um pequeno incremento na taxa de vaporização de água. O aumento de eficiência energética do processo de atomização permitiu uma redução de GN de 17%, ou R\$ 63.468,00 ao mês, com um retorno ao investimento de apenas 7 meses.

Referências

- ALVES, H. J.; MELCHIADES, F. G.; BOSCHI, A. O. Levantamento inicial do consumo de energias térmica e elétrica na indústria brasileira de revestimentos cerâmicos: resultados e discussão. Cerâmica Industrial, São Carlos, p. 17-21, abr. 2007.
- CETESB. Guia técnico ambiental da indústria de cerâmica branca e de revestimento - Série P + L. São Paulo: CETESB, 2006. 84 p.
- INEE. A eficiência energética e o novo modelo energético. Rio de Janeiro: INEE, 2001. 74 p.
- POOLE, A. D.; HOLANDA, J. B. de; TOLMASQUIM, M. T. Conservação de energia e emissões de gases do efeito estufa no Brasil. Rio de Janeiro: INEE, 1998. 39 p.
- SANTOS, G. M. dos et al. Serragem e gás natural como fontes energéticas em fornos túneis na indústria cerâmica vermelha. In: CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS – ENCIT, Porto Alegre, 2000. Anais...
- BERG, E. A. T.; NOGUEIRA, L. A. H. Cogeração na indústria cerâmica. Cerâmica Industrial, São Carlos, v. 1, n. 3, p. 27-30, 1996.
- FERREIRA, C. et al. Otimização energética de um forno na indústria cerâmica. Cerâmica Industrial, São Carlos, v. 13, n. 1, p. 23-27, 2008.
- RECCO, G. Estudo para utilização de energia térmica proveniente de forno cerâmico para secagem de cerâmica. Cerâmica Industrial, São Carlos, v. 13, n. 3, p. 43-45, 2008.
- HIMMELBLAU, D. M. Engenharia química: princípios e cálculos.
 6 ed. Rio de Janeiro: Prentice Hall do Brasil, 1998. 592 p.
- ANTUNES, A. F.; COLOMBO, M. C. Estudo da viabilização do uso de gás natural no processo de atomização: Atomizadores. Cocal do Sul, 2000. 37 p.
- ALVES, H. J.; MELCHÍADES, F. G.; BOSCHI, A. O. Consumo de gás natural na indústria de revestimentos cerâmicos brasileira. Cerâmica Industrial, São Carlos, v. 54, n. 331, p. 326-331, 2008.
- SC GÁS. O que é o Gás Natural: propriedades e características. Disponível em: http://www.scgas.com.br/info/oqueeogn/idse/280. Acesso em: 07/06/2009.
- 13. GOMIDE, R. **Estequiometria industrial**. 2 ed. São Paulo: Gráfica e Editora FCA, 1984. 423 p.

Para adquirir este livro, favor entrar em contato com a nossa gerente editorial Patrícia: Telefone: (16) 3351.8249 • E-mail: patricia@ceramicaindustrial.org.br