

# Avaliação Comparativa e Caracterização de Tripolifosfatos de Sódio Comerciais

Natália M. Perez, Fábio G. Melchiades, Anselmo O. Boschi\*

Laboratório de Revestimentos Cerâmicos – LaRC, Departamento de Engenharia de Materiais – DEMa, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luiz, km 235, CP 2068, 13574-970, São Carlos - SP, Brasil \*e-mail: daob@ufscar.br

**Resumo:** Os objetivos do presente trabalho foram avaliar comparativamente amostras comerciais de tripolifosfato de sódio (TPF) utilizados industrialmente como defloculantes para esmaltes e buscar, através de técnicas de caracterização apropriadas, identificar as razões para as diferenças observadas. A avaliação do desempenho dos TPFs como defloculante foi feita através de curvas de defloculação em condições padronizadas. Para a caracterização foram utilizadas, além das curvas de defloculação, as técnicas de microscopia eletrônica de varredura com EDS e difração de raios X. Os resultados obtidos mostram diferenças consideráveis do desempenho dos TPFs e os resultados das caracterizações explicam as razões para essas diferenças.

Palavras-chave: tripolifosfato de sódio, defloculação, esmaltes.

## 1. Introdução

O tripolifosfato de sódio (TPF) é o composto mais utilizado para a defloculação de esmaltes cerâmicos e, portanto é um insumo extremamente importante. O ajuste das propriedades reológicas das suspensões de esmaltes é fundamental para assegurar uma boa aplicação sobre os suportes cerâmicos e os defloculantes desempenham papel fundamental nesse ajuste.

Nesse cenário, o defloculante a ser utilizado deve ser criteriosamente escolhido para assegurar o melhor desempenho possível nessa etapa tão importante do processo de fabricação de produtos cerâmicos, a esmaltação, e variações das características dos mesmos devem ser evitadas, pois podem afetar significativamente a qualidade do produto final.

Nesse contexto os objetivos do presente trabalho foram: 1) avaliar comparativamente defloculantes (TPFs) comerciais e 2) identificar as causas das diferenças observadas. Espera-se com este trabalho contribuir para que os responsáveis pela escolha dos defloculantes fiquem mais atentos a todos os aspectos envolvidos.

# 1.1 O tripolifosfato de sódio (TPF)

O tripolifosfato de sódio (também denominado tripolifosfato pentassódico e trifosfato de sódio) é usualmente representado pela fórmula molecular Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> e é fornecido comercialmente como um pó branco, inodoro de densidade 0,7 a 1,0 g.cm<sup>-3</sup>, peso molecular de 367,88 g.mol<sup>-1</sup> e com ponto de fusão entre 650 e 1000 °C. Sua solução aquosa a 1%, a 25 °C, apresenta pH entre 9,5 e 10,5. A Figura 1 apresenta a fórmula estrutural do TPF.

Em relação à composição química um fator relevante é a relação mássica  $P_2O_5/Na_2O^{(1)}$ . Essa relação para o TPF puro é 1,37; valores diferentes indicam a presença de outras substâncias.

Do ponto de vista estrutural existem 3 formas cristalinas <sup>1,3,4</sup> de TPF: forma I, forma II e hexahidratada. Essas fases são identificadas através da técnica de difração de raios X e se diferenciam por apresentarem diferenças na coordenação do íon sódio. A principal diferença entre elas, do ponto de vista da capacidade defloculação, está na diferença de solubilidade em água, sendo a forma I a mais solúvel dentre os três tipos.

O tamanho das partículas do TPF influencia a solubilização em água – quanto menor o tamanho de partícula, maior a área superficial e, portanto mais rápida será a solubilização.

A ação do TPF como defloculante em suspensões de esmaltes se dá através de dois mecanismos<sup>1</sup>:

- Adsorção de suas moléculas na superfície das partículas provocando repulsão de caráter eletro-estérica entre elas;
- Complexação de cátions floculantes (Ca<sup>2+</sup> e Mg<sup>2+</sup>), através da formação de compostos insolúveis.

A presença do TPF influencia as forças de interação entre as partículas da suspensão e consequentemente suas características reológicas. Assim sendo, através do teor adequado do defloculante apropriado (ou mistura deles) pode-se conseguir suspensões com elevada concentração de sólidos (elevada densidade) e propriedades reológicas (viscosidade, etc.) compatíveis com as exigências do método de aplicação a ser utilizado. A redução do teor de água evita uma série de problemas, tais como a curvatura das peças, perda de resistência mecânica, tempo de secagem, comprimento da linha de esmaltação, etc.

#### 2. Materiais e Métodos

Tendo em vista os objetivos apresentados anteriormente, o trabalho experimental foi dividido em duas partes. Na primeira parte, avaliou-se comparativamente o desempenho como defloculante de TPFs comerciais. Para que as amostras fossem as mais representativas possíveis do que efetivamente as indústrias estão utilizando, foram colhidas nas próprias indústrias. A caracterização do desempenho foi feita através de curvas de defloculação de suspensões padronizadas de um esmalte transparente de monoporosa, constituído por 90% de frita e 10% de caulim, largamente utilizado pelos fabricantes de revestimentos cerâmicos. As características das suspensões e condições de ensaio foram padronizadas (volume de sólidos de 50%, resíduo de 2,0% - ABNT 325), para assegurar o foco comparativo dos ensaios.

Na segunda parte do trabalho buscaram-se nas características dos TPFs explicações para as diferenças de comportamento observadas na avaliação comparativa. Para isso, os mesmos foram caracterizados por difração de raios X, microscopia eletrônica de varredura (MEV) e análise química semi-quantitativa, por EDS.

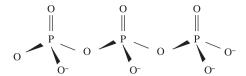



Figura 1. Formula estrutural do tripolifosfato de sódio (TPF).

## 3. Resultados e Discussões

# 3.1. Parte 1: Avaliação comparativa do desempenho dos TPFs

A Figura 2 apresenta as curvas de defloculação da suspensão padrão de esmalte para as 5 amostras de TPF. Pode-se notar que a amostra TPF5 apresentou comportamento bastante distinto das demais e que essa discrepância prejudica a visualização das diferenças entre as demais amostras. Para facilitar essa visualização, as curvas correspondentes às amostras TPF1 a 4 são apresentadas novamente na Figura 3, onde se pode notar que a variação entre as viscosidades mínimas é de aproximadamente 100 cP, o que é bastante considerável e pode afetar significativamente o comportamento da suspensão durante a aplicação do esmalte. As amostras TPF1 e TPF2 foram as que mais reduziram a viscosidade da suspensão de esmalte e apresentaram curvas semelhantes. As amostras TPF3 e TPF4 apresentaram viscosidades mínimas mais elevadas e comportamentos semelhantes.

Os resultados obtidos comprovam a necessidade de um controle rigoroso na escolha do TPF. Nesse sentido cabe salientar que todas as amostras estudadas eram comerciais e estavam sendo usadas por colorifícios, como seus defloculantes padrões, empregados na totalidade dos seus engobes e esmaltes fornecidos às indústrias cerâmicas.

#### 3.2. Parte 2: Caracterização dos TPFs

O principal objetivo da caracterização das amostras de TPF é identificar as razões para as diferenças de desempenho observadas na Parte I e apresentadas nas Figuras 2 e 3.

#### 3.2.1. Composição química e razão mássica P<sub>2</sub>O<sub>5</sub> / Na<sub>2</sub>O

A Tabela 1 apresenta a composição química das amostras, determinada de forma semi-quantitativa através do EDS acoplado ao microscópio eletrônico de varredura.

A razão mássica  $P_2O_5/Na_2O$  para o TPF puro é 1,37. Desta forma, qualquer desvio desse valor indica a presença de impurezas. As impurezas mais comumente são: pirofosfatos, trimetafosfatos, fosfatos não reagidos, polifosfatos de cadeia longa, cloretos e sulfatos, associados à água introduzida na preparação do produto.

A Tabela 2 apresenta as razões  $P_2O_5/Na_2O$  calculadas a partir dos resultados apresentados na Tabela 1. Pode-se perceber que somente o TPF1 apresentou a razão teórica, o que é compatível com o fato de ter alcançado o menor ponto de viscosidade mínima (Figura 2). As similaridades das curvas de defloculação das amostras TPF1 e TPF2 e das amostras TPF3 e TPF4 são compatíveis com a proximidade das suas razões  $P_2O_5/Na_2O$ . O comportamento discrepante do TPF5 é compatível com o fato de que sua razão  $P_2O_5/Na_2O$  foi a que mais se afastou do valor teórico e, além disso, detectou-se a presença de cloro, o que sugere a presença de um contaminante, que atua como floculante, ou seja, efeito oposto ao do TPF.

Assim, muito embora a determinação da composição química tenha sido semi-quantitativa, os resultados obtidos sugerem que a razão  ${\rm P_2O_5/Na_2O}$  é um bom indicador da pureza do TPF e se relaciona bastante bem com o desempenho dos mesmos como defloculantes.

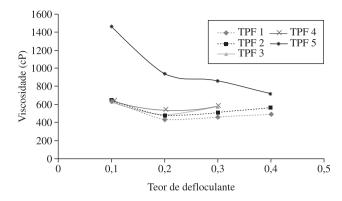
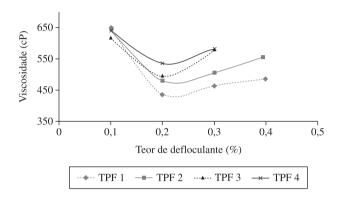




Figura 2. Curvas de defloculação de suspensão padrão de esmalte utilizando como defloculante as cinco amostras de TPF.



**Figura 3.** Curvas de defloculação de suspensão padrão de esmalte utilizando como defloculante as amostras TPF1, TPF2, TPF3 e TPF4.

**Tabela 1.** Composição química semi-quantitativa das amostras de TPF, determinada por EDS acoplado ao microscópio eletrônico de varredura.

| Elementos (%) | TPF 1 | TPF 2 | TPF 3 | TPF 4 | TPF 5 |
|---------------|-------|-------|-------|-------|-------|
| С             | 1,65  | 3,11  | 1,92  | 1,63  | 1,24  |
| O             | 8,76  | 6,22  | 9,61  | 9,96  | 5,21  |
| Na            | 37,32 | 37,2  | 38,99 | 38,98 | 31,03 |
| Si            | 0,37  | -     | _     | _     | 0,11  |
| P             | 51,16 | 53,48 | 49,47 | 49,43 | 28,97 |
| C1            | _     | _     | _     | _     | 32,73 |
| K             | _     | _     | _     | _     | 0,44  |
| Ca            | -     | -     | _     | -     | 0,28  |
| S             | 0,74  | _     | _     | _     | _     |

#### 3.2.2. Estruturas cristalinas (difração de raios X)

A Tabela 3 apresenta de forma resumida os resultados da caracterização das amostras de TPF por difração de raios X.

Como mencionado anteriormente, o TPF pode estar em três estruturas cristalinas diferentes: forma I, forma II e hexahidratada. A forma II está presente em todas as amostras, a forma I nas amostras TPF2, TPF3 e TPF4 e a forma hexahidratada nas amostras TPF1, TPF2, TPF4 e TPF5, sendo que os teores, avaliados com base na altura dos picos correspondentes a cada fase, variam de amostra para amostra. Tendo em vista que a capacidade de refletir os raios X depende da estrutura cristalina, a comparação direta das alturas dos picos como indicadores dos

Tabela 2. Razão mássica P.O./Na,O dos TPFs estudados.

| Amostra | P <sub>2</sub> O <sub>5</sub> /Na <sub>2</sub> O |
|---------|--------------------------------------------------|
| TPF 1   | 1,37                                             |
| TPF 2   | 1,43                                             |
| TPF 3   | 1,27                                             |
| TPF 4   | 1,27                                             |
| TPF 5   | 0,93                                             |

Tabela 3. Relação entre fases cristalinas capacidade defloculante dos TPFs.

| Amostra - |         | Viscosidade |               |             |  |
|-----------|---------|-------------|---------------|-------------|--|
| Amostra   | Forma I | Forma II    | Hexahidratado | mínima (cP) |  |
| TPF 1     | -       | *           | *             | 435         |  |
| TPF 2     | ***     | ***         | ***           | 480         |  |
| TPF 3     | **      | **          | _             | 495         |  |
| TPF 4     | **      | **          | **            | 535         |  |
| TPF 5     | _       | *           | *             | 720         |  |

Intensidade dos picos: \*\*\*alta, \*\*média, \*baixa.

teores de cada fase fica comprometida. Portanto, as intensidades apresentadas na Tabela 3 só podem ser utilizadas como indicativas da variação dos teores de cada fase de uma amostra para a outra. Sob essa ótica e lembrando que a forma I é a que apresenta maior solubilidade, e, portanto, deveria favorecer o desempenho como defloculante, os resultados apresentados na Tabela 3 são coerentes com o melhor desempenho do TPF2 em relação ao TPF3, TPF4 e TPF5. Entretanto, a baixa intensidade observada para o TPF1 não é compatível com o fato desta amostra ser a que apresentou o melhor desempenho (Figura 3). O difratograma da amostra TPF5 indicou a presença de cloreto de sódio (NaCl), que certamente afetou significativamente seu desempenho e foi, pelo menos em parte, responsável pelo comportamento anômalo observado na Figura 3.

A caracterização do TPF por difração de raios X, muito embora tenha contribuído para explicar as diferenças de comportamento das amostras TPF2, TPF3, TPF4 e TPF5 (Figuras 2 e 3), não foi capaz de justificar o bom desempenho da amostra TPF1. O melhor desempenho desta amostra provavelmente está associado à maior pureza do fosfato de sódio, conforme detectado através da relação  $P_2O_s/Na_2O$  apresentada anteriormente.

#### 3.2.3. Análise morfológica (microscopia eletrônica de varredura)

A observação dos TPFs estudados ao microscópio eletrônico de varredura permitiu notar que as amostras TPF1, TPF2, TPF3 e TPF4 não apresentam diferenças significativas de composição química, pois foram observados com o detector de elétrons retroespalhados, que evidencia o contraste químico do material. Entretanto, a amostra TPF5 apresentou significativas variações de contraste. A análise pontual das áreas mais claras permitiu a identificação dos cristais de cloreto de sódio que haviam sido identificados pela difração de raios X.

No que se refere ao tamanho das partículas, observou-se que o TPF 4 era o mais grosseiro, o que pode fazer com que sua velocidade de dissolução seja menor, e consequentemente prejudicar seu desempenho.

#### 4. Conclusões

Considerando-se que as amostras de TPF estudadas estavam sendo utilizadas industrialmente e apresentaram diferenças significativas de desempenho, pôde-se concluir que maior atenção deve ser dada à escolha do TPF.

As técnicas de caracterização utilizadas neste trabalho se mostraram satisfatórias para orientar na seleção de um TPF que apresente bom desempenho.

Sob o ponto de vista industrial, estas análises se mostraram úteis tanto para os fornecedores quanto para os usuários de TPF, para que desta forma possam se assegurar que o produto irá desempenhar sua função, e qualquer desvio do comportamento esperado, pode ser de outras variáveis (compostos utilizados na produção de esmaltes e engobes) e não do defloculante.

#### Referências

- BOU, E. et al. Controle da qualidade dos tripolifosfatos sódicos empregados na fabricação de engobes e esmaltes. Cerâmica Industrial, v. 5, n. 4, p. 13-20, 2000.
- MORENO, A. B. Adequação das propriedades de tintas e esmaltes aos sistemas de aplicação e técnicas decorativas. Parte I: Esmaltação. Cerâmica Industrial, v. 5, n. 5, p. 11-18, 2000.
- CHECCINATO, F. et al. Diferenças na efetividade do tripolifosfato de sódio levando-se em consideração suas estruturas cristalinas. In: CONGRESSO BRASILEIRO DE CERÂMICA- CBC, 46, 2002, São Paulo, Brasil. Anais...
- CHECCINATO, F. et al. Study of the Crystalline Structure of the Sodium Tripolyphosfates, Acta Microscopica. In: CONGRESS OF THE BRASILIAN SOCIETY FOR MICROSCOPY AND MICRANALYSIS, 28, 2001, Água de Lindóia, Brasil. Anais....