

Análise Experimental dos Parâmetros de Processamento que Afetam o Efeito de Curvaturas Diferidas em Revestimentos Cerâmicos

Celso Joaquim de Oliveira, Paulo Rossa*, Rafael M. Gama

Cerâmica Villagres Rua 1, s/n, Chácara Vigorelli, 13510-000 Santa Gertrudes - SP, Brasil *e-mail: rossa@villagres.com.br

Resumo: observa-se em revestimentos cerâmicos um efeito conhecido como "curvatura diferida", que se manifesta na forma de um empeno nas peças, cuja curvatura muda desde o momento exato em que sai do forno por até meses. O fenômeno está relacionado com tensões residuais geradas no interior das peças quando dentro dos fornos, e ocorre devido ao mecanismo de fluência, responsável pelo alívio destas. O presente trabalho visa apresentar a influência de algumas variáveis de composição e processo sobre a curvatura diferida apresentada por peças industriais de porcelanato, buscando determinar maneiras efetivas de garantir a obtenção de peças de grande formato com planaridade adequada para os padrões de qualidade exigidos atualmente.

Palavras-chave: curvatura diferida, tensões, revestimentos cerâmicos.

1. Introdução

No processamento de revestimentos cerâmicos o resfriamento das peças, no interior dos fornos, ocorre em três etapas claramente distintas: resfriamento direto, indireto e final, todos ocorrendo à maior taxa possível sem comprometer a integridade física das mesmas.

No entanto, tal resfriamento gera tensões no interior das peças, que quando aliviadas pelo processo de fluência resultam no empenamento destas, comprometendo a qualidade do revestimento, dificultando a instalação e o assentamento e gerando complicações até mesmo para a classificação da qualidade do produto, já que o alívio destas tensões é observado por várias semanas após o processamento¹.

O efeito deste empeno observado em revestimentos é conhecido como "curvatura diferida", e adquire maior magnitude quanto maior for o tamanho das peças; logo, atinge diretamente os porcelanatos.

Além da temperatura, o efeito tem influência dos tamanhos de partículas e teor de quartzo presente, uma vez que este promove aumento da fluência neste tipo de material.

O presente trabalho foi desenvolvido na Cerâmica Villagres e teve como objetivo monitorar e relacionar estas tensões com quatro diferentes parâmetros:

- Formulação das massas porcelânicas;
- Pressões de prensagem;
- Espessuras das camadas de esmalte e engobe; e
- Teor de quartzo residual após a queima.

São apresentados os resultados experimentais.

2. Metodologia

Foram adotadas duas diferentes composições, sendo a composição P01 contendo um menor teor de feldspato, e a P07 contendo maior teor do mesmo, com umidade de prensagem das massas de 6%.

As amostras foram prensadas em uma prensa SITI 3600, no formato 50×100 cm, sob pressões de 330 kgf.cm⁻², 370 kgf.cm⁻², 400 kgf.cm⁻², e submetidas a secagem em secador horizontal, sob temperatura de 230 °C e ciclos de 20 minutos.

Em seguida receberam camadas compostas por engobe e esmalte mate acetinado, variando entre 70 e 130 g cada um, com bandeja 41×41 cm.

Por fim as amostras foram queimadas em forno industrial, em temperatura de 1200 °C e ciclos de 60 minutos, e medidas com relógio comparador em quatro diferentes momentos: logo após a queima, 24, 48 e 72 horas depois da saída do forno.

As Figuras 1 a 4 apresentam imagens do equipamento utilizado para medir a curvatura lateral das peças. As medidas foram realizadas nos 4 lados das peças, fazendo uso de um relógio comparador com precisão de 0,01 mm.

3. Resultados

As Tabelas 1 e 2 apresentam os resultados das medidas de curvatura nos quatro lados das peças imediatamente após a queima e após 24, 48 e 72 horas da saída forno, para os produtos fabricados com as massas P01 e P07, com as amostras compactadas a 370 kgf.cm⁻². Verifica-se que, para estas condições de trabalho, as massas apresentam comportamentos bastante semilares.

3.1. Variações da curvatura diferida com a pressão de compactação

Nas Figuras 5 e 6 encontram-se os resultados da variação da flecha de curvatura das peças em função do tempo após a saída do forno para produtos fabricados com distintas pressões de compactação.

Observa-se que a composição P01 (Figura 5), com menor teor de feldspato, sofre menor curvatura diferida conforme se aumenta a pressão de compactação, mantendo maior estabilidade de planaridade ao longo do tempo. O mesmo acontece com a composição P07, onde observa-se redução da magnitude do efeito ao passo que aumenta-se a pressão de compactação.

Comparativamente, observa-se que a composição P07, com maior teor de feldspato, é menos susceptível ao efeito, mesmo sob pressões de compactação inferiores.

3.2. Variações da curvatura diferida com a camada engobe/esmalte*

Nas Figuras 7 a 9 encontram-se os resultados da variação da curvatura das peças após a saída do forno em função do tempo para

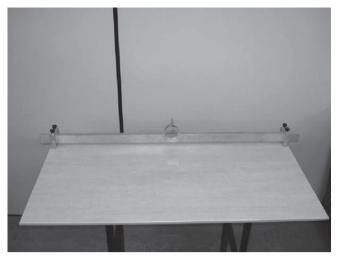


Figura 1. Dispositivo utilizado para medir a curvatura das peças (lado maior).

Figura 2. Dispositivo utilizado para medir a curvatura das peças (lado menor).

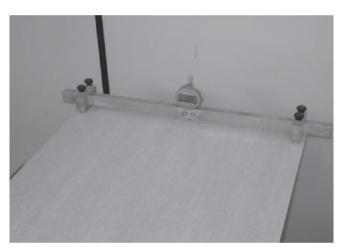


Figura 3. Relógio comparador com medidas em milímetros.

Lado c
Lado b
Lado b

 $\textbf{Figura 4.} \ \, \textbf{E} s \textbf{q} \textbf{u} \textbf{ema} \ \, \textbf{d} \textbf{as amostras} \ \, \textbf{e} \ \, \textbf{os lados referentes} \ \, \textbf{às medidas}.$

distintas combinações de espessuras das camadas de engobe e esmalte. A espessura das camadas de engobe e esmalte foi controlada através do peso aplicado. A pressão de compactação de todas as amostras preparadas para esta etapa do trabalho foi de 370 kgf.cm⁻².

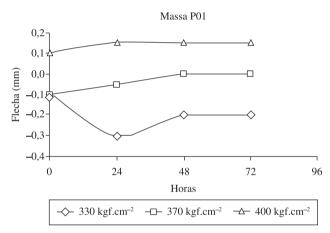

Observa-se que a relação engobe/esmalte acetinado não apresenta grande influência na medida da flecha, portanto, na medida das curvaturas diferidas. Combinações diferentes apresentam comportamentos similares. No entanto, nota-se que a composição

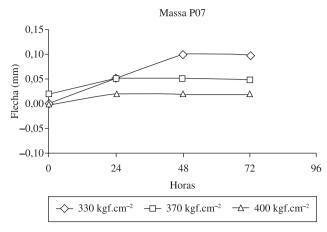
Tabela 1. medida da flecha nas quatro arestas da amostra de composição P01 nos quatro diferentes momentos após a queima.

	Lado a	Lado b	Lado c	Lado d
Imediatamente após queima	-0,4	-1,2	-0,5	-1,3
24 horas após queima	-0,3	1,0	-0,2	0,9
48 horas após queima	0,0	0,7	0,1	0,8
72 horas após queima	0,1	0,5	0,0	0,5

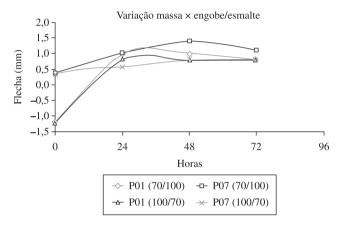
Tabela 2. medidas da flecha nas quatro arestas da amostra de composição P07 nos quatro diferentes momentos após a queima.

	Lado a	Lado b	Lado c	Lado d
Imediatamente após queima	-0,4	-1,3	-0,2	-1,4
24 horas após queima	-0,2	1,1	0,0	1,0
48 horas após queima	-0,1	0,7	0,1	0,6
72 horas após queima	0,1	0,5	0,1	0,4

Figura 5. Variação da pressão de compactação × medida da flecha para composição P01.


P01, com menor teor de feldspato, é mais susceptível ao efeito da curvatura retardada.

3.3. Efeito da curvatura diferida para diversas peças da mesma referência


Na Figura 10 encontram-se representados da avaliação realizada de um conjunto de 14 peças de uma mesma referência fabricadas em um mesmo lote de produção. Observa-se que mesmo entre produtos da mesma referência, há discrepâncias significativas no efeito das curvaturas diferidas. Contudo, após 72 horas após a queima observa-se uma redução na magnitude do efeito, atingindo uma faixa de variação da medida da flecha aceitável, em torno de 1,1 mm.

3.4. Influência do teor de guartzo

Nesta etapa do trabalho, foram selecionadas duas amostras de produtos acabados, confeccionados nos meses de novembro de 2008 e fevereiro de 2009, na empresa Cerâmica Villagres. Como pode ser verificado através dos difratogramas de raios X apresentados nas Figuras 11 e 12, estes produtos apresentam pequenas diferenças na concentração de quartzo livre presente na microestrutura. A intensidade do pico principal de quartzo pode ser melhor analisada através da Tabela 3.

Figura 6. Variação da pressão de compactação × medida da flecha para composição P07.

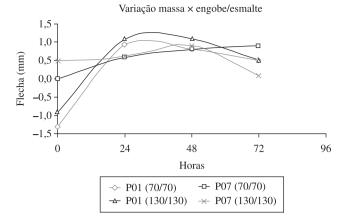


Figura 7. Variação da relação flecha × engobe/esmalte para ambas as composições, na proporção 70 g de engobe/100 g de esmalte e 100 g de engobe/70 g de esmalte.

Figura 8. Variação da relação flecha × engobe/esmalte para ambas as composições, na proporção 130 g de engobe/100 g de esmalte e 100 g de engobe/130 g de esmalte.

Nota-se que o teor de quartzo na amostra de fevereiro de 2009 é superior ao apresentado pela amostra de novembro de 2008, ao passo que a curvatura diferida apresenta maior magnitude na primeira (Figura 13). Logo, o teor de quartzo pode estar diretamente associado à maior susceptibilidade do efeito.

Figura 9. Variação da relação flecha × engobe/esmalte para ambas as composições, na proporção 70 g de engobe/70 g de esmalte e 100 g de engobe/130 g de esmalte.

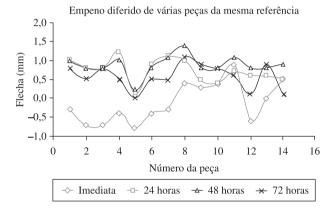


Figura 10. Magnitude das curvaturas diferidas para diversas peças da mesma amostragem.

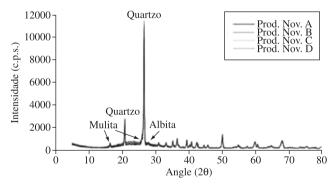


Figura 11. Difratograma de raios X da amostra de novembro de 2008.

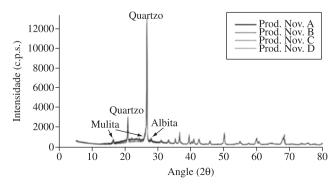


Figura 12. Difratograma de raios X da amostra de fevereiro de 2009.

Tabela 3. intensidades médias do pico principal do quartzo para cada amostra.

Amostra	Intensidade média (c.p.s.) – pico principal de quartzo
Novembro de 2008	10500 ± 787
Fevereiro de 20009	11725 ± 1584

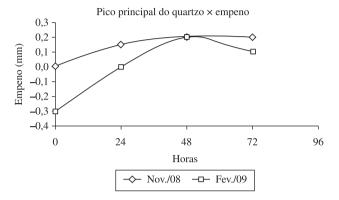


Figura 13. Influência do teor de quartzo na curvatura diferida para duas amostras distintas.

4. Conclusões

Dos resultados obtidos pode-se observar a influência de diversos fatores no efeito das curvaturas diferidas, sendo alguns bastante conclusivos:

- 1. A massa cerâmica P07, contendo maior teor de fundentes, possui menor susceptibilidade ao efeito de curvatura diferida, uma vez que o quartzo presente na composição seja diluído, formando uma grande quantidade de fase líquida, portanto gerando uma menor quantidade de tensões;
- Quanto maior a pressão de compactação, menor será o efeito da curvatura, facilitando assim uma maior aproximação das partículas, mesmo durante a queima, diminuindo as tensões residuais no interior do forno;
- 3. Quanto maior o resíduo de moagem, maior será o pico de quartzo. Assim sendo, a curvatura será mais côncava. Isto relaciona-se com a fluência, comprovando que o aumento na quantidade de quartzo, bem como o tamanho das partículas, origina uma microestrutura com maior quantidade de microfissuras que provavelmente aumentarão a fluência das peças. O fenômeno também pode ser observado quando o grau de moagem da composição é insuficiente;
- As camadas de engobe e esmalte não interferem no fenômeno de curvaturas diferidas de maneira significativa.

A partir dos resultados observados, pode-se alterar um ou mais parâmetros de processamento, de modo a reduzir o efeito das curvaturas, levando-os para uma faixa dentro do aceitável, de modo a garantir a qualidade do produto e garantir o bom uso para o fim a que se destina os revestimentos cerâmicos, sobretudo os porcelanatos, que constituem o grupo mais afetado pelo fenômeno, e são responsáveis por uma enorme participação do faturamento da indústria de revestimentos brasileira.

Referências

 CANTAVELLA, V. et al. Curvaturas diferidas em gres porcelanico. Análisis y medida de los factores que intervienen. In: CONGRESSO NACIONAL DE LA CALIDAD DEL AZULEJO E DEL PAVIMENTO CERÂMICO - Qualicer 2008.