

Influência das Características do Engobe sobre a Curvatura dos Revestimentos Cerâmicos

Marcelo Dal Bó^{a,b}, Dachamir Hotza^a, Fábio Gomes Melchiades^c,

Anselmo Ortega Boschi^{c*}

 ^aPrograma de Pós-graduação em Ciência e Engenharia de Materiais – PGMAT, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brasil
^bInstituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul – IFRS, Feliz, RS, Brasil

^cLaboratório de Revestimentos Cerâmicos – LaRC, Departamento de Engenharia de Materiais – DEMa,Universidade Federal de São Carlos – UFSCar, São Carlos, SP, Brasil *e-mail: daob@ufscar.br

Resumo: Nesse trabalho estudou-se a influência da camada de engobe sobre a curvatura de revestimentos cerâmicos. Vários engobes foram formulados e aplicados sobre um suporte cerâmico B-IIb, segundo a norma ISO EN 10545/ABNT NBR 13818. Um planejamento de experimentos com misturas foi elaborado para auxiliar na formulação dos engobes. Propriedades como dilatação térmica e retração linear de queima foram medidas. Os resultados mostraram que o coeficiente de expansão térmica dos engobes não é o fator mais relevante no desenvolvimento da curvatura. A diferença entre as retrações lineares do engobe e suporte foi a variável que mais influenciou a curvatura. Com isso, foi possível estabelecer uma relação matemática entre a diferença de retração linear do engobe e suporte com a curvatura central dos revestimentos cerâmicos.

Palavras-chave: curvatura, engobe, experimentos com mistura, cerâmica de revestimento.

1. Introdução

A planaridade da superfície é uma das características exigidas dos revestimentos cerâmicos. Com a tendência de peças cada vez maiores e de menor espessura, produzir revestimentos planos tem se tornado uma tarefa cada vez mais complexa. Para complicar ainda mais esse tema, há ainda a "curvatura diferida (ou retardada)" ^{1,2}.

Muito embora na prática industrial a expansão térmica dos engobes seja tida como um parâmetro importante que influencia fortemente a curvatura dos revestimentos cerâmicos, há muito pouco na literatura especializada a respeito desse papel do engobe.

Estudos anteriores indicam que a flecha de curvatura central de revestimentos cerâmicos é influenciada pelo chamado acordo massaesmalte. Como ilustra a Figura 1, esse parâmetro é determinado através da sobreposição das curvas dilatométricas, obtidas através do aquecimento de amostras previamente queimadas. A sobreposição das curvas dilatométricas é feita de tal forma que elas coincidam na chamada "temperatura de acoplamento (*Ta*)", que é definida como a temperatura intermediária entre a temperatura de amolecimento (*Tr*) e a temperatura de transição vítrea (*Tg*), ou seja: Ta = (Tr + Tg)/2. No entanto, essa metodologia apresenta importantes limitações que comprometem sua aplicação³⁻⁵. Dentre as limitações dessa metodologia há duas que merecem destaque: 1) ela não considera a camada de engobe e 2) o estabelecimento da temperatura de acoplamento (*Ta*) é totalmente arbitrário.

Considerando que atualmente a grande maioria dos revestimentos possui uma camada de engobe é fundamental que o efeito da mesma sobre a curvatura das peças seja estudado. Nesse contexto, o objetivo geral do presente trabalho foi contribuir para a melhor compreensão do papel do engobe sobre a curvatura dos revestimentos cerâmicos.

A curvatura dos revestimentos cerâmicos pode ser côncava ou convexa, como mostrado na Figura 2. No caso da interação entre suporte e esmalte o sinal da fecha de curvatura depende da diferença de retração linear do suporte e do esmalte desde a *Ta* até a temperatura ambiente (*Tamb*), ou seja $\Delta C_{\text{Ta-Tamb}}$. Este item está relacionado aos coeficientes de expansão térmica linear.

Apesar do grande número de trabalhos relativos à influência do esmalte e do gradiente térmico sobre a curvatura de cerâmicas de revestimentos, existe uma carência de trabalhos sobre a influência da camada de engobe sobre a curvatura. Dentre os poucos trabalhos sobre esse tema cabe destacar alguns listados na bibliografia deste⁷⁻¹⁰. De um modo geral esses trabalhos comprovaram a importância da presença da camada de engobe sobre a curvatura dos revestimentos cerâmicos.

O objetivo específico do presente trabalho foi buscar correlacionar as características do engobe com a curvatura de amostras produzidas em laboratório, em condições controladas.

2. Materiais e Metodologia

Para a formulação dos engobes foram utilizadas cinco matériasprimas: argila, feldspato, vidro moído, quartzo e zirconita. A adição de argila nas formulações de engobes confere plasticidade durante a aplicação; o feldspato é utilizado como um fundente, diminuindo assim sua porosidade e absorção de água; o vidro moído nesse trabalho substitui a frita cerâmica, sendo utilizada como principal agente fundente da formulação; o quartzo atua como refratário e para ajustar o coeficiente de expansão térmica do engobe e, finalmente, a zirconita é utilizada para conferir opacidade ao engobe. Todas as matérias-primas foram gentilmente fornecidas pela Endeka Ceramics Ltda.

A Tabela 1 mostra o planejamento de experimentos utilizado para a formulação dos engobes, com o uso do software Statistica 7.0. Para cada formulação de engobe pesou-se 300 g da mistura em balança com resolução de $\pm 0,01$ g. A moagem foi feita a úmido em moinho planetário por 15 min, resultando em uma suspensão com densidade entre 1,85 e 1,87 kg/L. O resíduo de moagem foi controlado em peneira com abertura de 45 µm (ABNT #325), permanecendo entre 0,5 a 1,0%.

Com as suspensões dos engobes foram elaborados, por colagem, corpos-de-prova com dimensões aproximadas de 1×1×3 cm. Esses

por sua vez, foram secos em estufa a 110 °C e posteriormente queimados à 1050 °C em forno de queima rápida (Inti FQ-1300), com taxa de aquecimento de 70 °C/min e 3 min de patamar na temperatura máxima. As retrações de queima (RL) foram medidas

Figura 1. Sobreposição das curvas dilatométricas para a avaliação do acoplamento massa-esmalte⁶.

em 4 corpos-de-prova para cada engobe, com o auxílio de um paquímetro. O coeficiente de expansão térmica (*CTE*) foi medido através do dilatômetro RB-3000, da temperatura ambiente até 325 °C com velocidade de aquecimento de 5 °C/min.

Para a medida da curvatura central (*D*), foram preparados corpos-de-prova com suporte cerâmico de dimensão aproximada de $3 \times 0.65 \times 20$ cm. Sobre esses suportes foram aplicadas camadas de 1,2 mm dos engobes com auxílio de binil com abertura de 0,6 mm. Posteriormente, foram secos em estufa e queimados em forno de queima rápida com o mesmo ciclo de queima anterior e temperatura máxima de 1050 °C. Para cada engobe, foram preparadas duas réplicas genuínas. Também foi queimado um corpo-de-prova sem aplicação de engobe, para avaliar as curvaturas dos mesmos sem a presença do engobe (Figura 3). Após a queima foram medidas as flechas de curvatura central (*D*) dos corpos de prova com o auxílio de um relógio comparador.

Para os experimentos com misturas foram aplicadas algumas restrições com relação aos percentuais das matérias-primas utilizadas, mostradas Tabela 2 e Equações $A, B \in C$, visando aproximar as composições laboratoriais aos engobes utilizados industrialmente.

• Restrições dos percentuais de matérias-primas:

 $\% Feldspato + \% Vidro \le 60\%$ (A)

$$\text{%Argila} + \text{%Quartzo} \le 60\% \tag{B}$$

$$\% Vidro + \% Zirconita \le 40\%$$
(C)

Figura 2. Fecha de curvatura central em revestimentos cerâmicos quando (a) D > 0 e (b) $D < 0^{(3)}$.

Tabela 1. Formulações dos engobes utilizados nos ensaios de laboratório (percentuais em massa).

Formulação	Argila	Feldspato	Vidro moído	Quartzo	Zirconita
	(%)	(%)	(%)	(%)	(%)
1	40,0	40,0	20,0	0,0	0,0
2	10,0	40,0	10,0	40,0	0,0
3	40,0	40,0	10,0	10,0	0,0
4	40,0	40,0	10,0	0,0	10,0
5	40,0	20,0	40,0	0,0	0,0
6	40,0	0,0	40,0	20,0	0,0
7	20,0	0,0	40,0	40,0	0,0
8	10,0	10,0	40,0	40,0	0,0
9	40,0	20,0	10,0	0,0	30,0
10	40,0	0,0	10,0	20,0	30,0
11	10,0	40,0	10,0	10,0	30,0
12	20,0	40,0	10,0	0,0	30,0
13	10,0	10,0	10,0	40,0	30,0
14	20,0	0,0	10,0	40,0	30,0
15	10,0	40,0	20,0	30,0	0,0
16	10,0	20,0	40,0	30,0	0,0
17	20,0	30,0	10,0	40,0	0,0
18	40,0	30,0	10,0	20,0	0,0
19	20,0	40,0	20,0	0,0	20,0
20	10,0	40,0	20,0	10,0	20,0
21 ^a	24,5	25,0	19,5	19,5	11,5
21b	24,5	25,0	19,5	19,5	11,5

As matérias-primas foram caracterizadas através de espectrometria de fluorescência de Raios X, (Bruker, Explorer S4).

Os resultados obtidos, retração linear (RL), coeficiente de expansão térmica (CTE) e flecha de curvatura central (D) foram utilizados para a obtenção das superfícies de resposta, que descrevem os resultados em função da proporção das matérias-primas utilizadas.

3. Resultados e Discussão

3.1. Composição química

As composições químicas das matérias-primas utilizadas são apresentadas na Tabela 3. Evidencia-se que o vidro utilizado é proveniente de resíduos de reciclagem, em particular lâmpadas, frascos e vidro plano. Devido ao alto percentual de sódio e cálcio,

Figura 3. Corpos-de-prova elaborados em laboratório.

Tabela	2.	Restrições	estipuladas	para	os	percentuais	em	massa	das
matérias	-pr	imas.							

	Valor mínimo	Valor máximo
	(%)	(%)
Argila	10,0	40,0
Feldspato	0,0	40,0
Vidro	10,0	40,0
Quartzo	0,0	40,0
Zirconita	0,0	30,0

Tabela 3. Composição química das matérias-primas

essa matéria-prima pode ser considerada um resíduo de vidro soda-cal. O feldspato utilizado nas formulações é um feldspato predominantemente potássico. O quartzo (SiO₂ > 98%) e a zirconita (ZrO₃ > 66%) utilizados apresentaram alto grau de pureza.

3.2. Interação suporte-engobe

De acordo com a Tabela 4, a análise de variância (ANOVA) mostra que o modelo cúbico especial apresentou um valor de p < 0,05e um elevado R², com isso esse modelo torna-se o mais adequado para descrever o comportamento da curvatura central do revestimento cerâmico (*D*) de acordo com o percentual das matérias-primas (fatores) utilizado na formulação do engobe.

De acordo com o modelo cúbico especial, a Tabela 5 ilustra a significância de cada fator e suas interações com relação à variável curvatura central. Para valores de p menores que 5% (0,05), quando se altera o percentual da matéria-prima, altera-se também a curvatura central. Portanto, o vidro e quartzo são os componentes que mais afetaram a flecha de curvatura central dos revestimentos cerâmicos. A Tabela 5 também mostra a importância das interações entre as matérias-primas. Nesse caso, feldspato e zirconita individualmente não afetam a flecha de curvatura, porém a interação entre esses fatores (*BE*) é significante perante a variação da curvatura central. Resultados correspondentes às interações de matérias-primas somente são possíveis com a realização de grande número de experimentos, evidenciando a importância da realização de ensaios com o número de fatores igual ou próximo a realidade.

O valor de p encontrado para o feldspato na Tabela 5 é muito próximo a 5%. O feldspato potássico inicia a formação de fase líquida a uma temperatura próxima a 990 °C em composições contendo quartzo¹¹. Apesar da queima ter sido realizada a 1050 °C, não houve formação de fase líquida importante devido ao tempo curto do tratamento térmico. Nessa condição, o feldspato potássico não apresentou influência sobre a flecha de curvatura do revestimento cerâmico.

A Figura 4 apresenta as curvas de nível para os fatores quartzo, argila e vidro, mantendo constantes os percentuais dos fatores feldspato e zirconita, respectivamente em 20% e 15%. Com o incremento do percentual de quartzo nas composições dos engobes, evidenciou-se um aumento na curvatura central de revestimentos cerâmicos (D), assim como a interação entre o quartzo e a argila. Por outro lado, composições com maiores percentuais de quartzo e argila diminuíram a retração linear do engobe (RL), tornando-os mais refratários. Ainda, de acordo com a Figura 4, engobes com

ruben et composição química das materias primas.										
Matéria-Prima	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	CaO	MgO	ZrO ₂	TiO ₂	Fe ₂ O ₃	Perda ao fogo
Quartzo	98,03	0,24			0,75			0,03	0,03	0,92
Zirconita	32,45	0,89					66,17	0,12	0,09	0,28
Feldspato	66,20	18,67	2,86	11,40	0,22	0,04		0,01	0,13	0,47
Vidro	70,4	1,30	14,20	0,28	8,86	3,88		0,04	0,39	0,65
Argila	42,40	35,10	0,10	1,10		0,20		1,20	1,10	18,80

Tabela 4. ANOVA para a variável flecha de curvatura central (D).

Modelo	Soma dos quadrados (SS)	Graus de Liberdade (df)	Quadrado médio (MS)	Razão F	Valor p	R ²
Linear	423,99	4	105,99	14,06	0,000	0,768
Quadrático	121,11	10	12,11	12,12	0,001	0,987
Cúbico especial	6,92	5	1,38	39,16	0,025	0,999
Cúbico completo	0,02	1	0,02	0,38	0,647	0,999
Total ajustado	552,11	21	26,29			

maior percentual de vidro reduziram a flecha de curvatura central. As correlações entre as propriedades desses engobes frente à flecha de curvatura central são mostradas na Figura 5 e na Figura 6.

Uma análise de correlação entre o coeficiente de expansão térmica linear dos engobes (CTE) e a flecha de curvatura (D) dos corpos de prova encontra-se na Figura 5. Dentro da faixa estudada do CTE dos engobes não foi encontrada nenhuma relação com a flecha de curvatura, evidenciando que não houve influência do CTE do engobe sobre a curvatura de revestimentos cerâmicos durante o processo de queima.

Na Figura 6 mostra-se a relação encontrada entre a flecha de curvatura central e a diferença de retração linear de queima entre o suporte e o engobe ($\Delta RL = RL_{suporte} - RL_{engobe}$). Analisando

o comportamento de *D*, nota-se que quando $\Delta RL < 0$ (retração do engobe maior que a retração do suporte) não se observou curvatura e quando $\Delta RL > 0$ (retração do engobe menor que a retração do suporte) a curvatura cresce de forma exponencial com a diferença de retração linear entre o suporte e o engobe. O comportamento da curvatura central (*D*) com ΔRL pôde então ser descrita pela Equação *D*. Grandes diferenças de retração linear de queima entre o suporte e o engobe provocaram tensões entre essas duas camadas¹². Consequentemente, essas tensões se pronunciaram macroscopicamente em forma de curvatura dos corpos de prova.

$$D = 0,2554 \cdot e^{(0,7278 \cdot \Delta RL)} \tag{D}$$

	Coeficiente	Erro Std.	<i>t</i> (2)	р	-95%	+95%
(A) Argila	0,716	8,938	0,080	0,943	-37,741	39,174
(B) Feldspato	-32,353	8,503	-3,805	0,063	-68,941	4,236
(C) Vidro	120,314	9,417	12,776	0,006	79,794	160,834
(D) Quartzo	59,700	8,039	7,426	0,018	25,110	94,289
(E) Zirconita	-14,113	12,879	-1,096	0,387	-69,528	41,301
AB	128,376	36,122	3,554	0,071	-27,044	283,796
AC	-275,291	34,939	-7,879	0,016	-425,621	-124,960
AD	85,309	37,838	2,254	0,153	-77,497	248,114
AE	61,302	32,490	1,887	0,199	-78,493	201,098
BC	-161,799	25,292	-6,397	0,024	-270,624	-52,973
BD	48,977	29,571	1,656	0,239	-78,258	176,211
BE	217,561	23,180	9,386	0,011	117,824	317,298
CD	-381,124	27,822	-13,698	0,005	-500,834	-261,413
CE	-343,280	36,970	-9,285	0,011	-502,350	-184,211
DE	-16,164	19,042	-0,849	0,485	-98,095	65,767
ABC	149,339	74,198	2,013	0,182	-169,910	468,588
ABD	-327,679	102,960	-3,183	0,086	-770,684	115,326
ABE	-244,648	57,871	-4,228	0,052	-493,648	4,352
ACD	229,993	91,596	2,511	0,128	-164,114	624,101
ACE	205,296	163,274	1,257	0,336	-497,216	907,808

Figura 4. Curvas de nível para a flecha de curvatura central (*D*) segundo o modelo cúbico especial.

Figura 5. Flecha de curvatura central (D) versus coeficiente de expansão térmica linear (CTE) dos engobes.

Figura 6. Flecha de curvatura central (*D*) versus diferença de retração linear (ΔRL) de queima entre o engobe e o suporte.

Por outro lado, estudos anteriores mostraram a influência das espessuras das camadas de suporte e vidrado (*h*) na curvatura central³. Como no presente trabalho foi utilizada uma espessura do suporte muito maior que a espessura do engobe ($h_{suporte} >> h_{engobe}$), pode-se dizer que a espessura da camada de engobe não foi capaz de curvar o suporte.

4. Conclusão

O presente trabalho estudou a influência da retração linear e da dilatação térmica do engobe sobre a curvatura central de revestimentos cerâmicos. Com o auxílio da metodologia de planejamento experimental com misturas evidenciou-se que:

- As diferenças entre as expansões térmicas do engobe e suporte (Δ*CTE*) não apresentaram relação com a flecha de curvatura central (*D*);
- As diferenças de retração linear entre o suporte e o engobe (Δ*RL*) apresentaram significância com relação à flecha da curvatura central;
- Quando o engobe retraiu mais que o suporte cerâmico, não houve curvatura. Isso pode ser explicado pela diferença de espessura dessas duas camadas ($h_{suporte} >> h_{engobe}$). Em concordância com estudos anteriores, a espessura das camadas também influencia a curvatura central de revestimentos cerâmicos;
- O modelo cúbico especial mostrou-se adequado para descrever o comportamento da flecha de curvatura central. Nesse modelo, evidenciou-se que vidro e o quartzo foram os componentes do engobe que apresentaram influência significativa sobre a flecha de curvatura central.

Agradecimentos

Os autores deste trabalho expressam sua gratidão a CAPES (Projeto Pro-Engenharias) pelo auxílio financeiro prestado à pesquisa, aos professores do PGMAT (UFSC) e aos professores do PPGCEM (UFSCar) por suas contribuições durante o trabalho.

Referências

- CANTAVELLA, V. et al. Curvaturas diferidas en gres porcelánico. Análisis y medida de los factores que intervienen. In: CONGRESO MUNDIAL DE LA CALIDAD DEL AZULEJO Y DEL PAVIMENTO CERÁMI-CO, 10., 2008, Castellón de La Plana. Anales... Castellón de La Plana: Cámara Oficial de Comercio, Industria y Navegación, 2008. p. 1-13.
- CANTAVELLA, V. et al. Curvaturas diferidas en baldosas cerámicas de revestimiento porosas. In: CONGRESO MUNDIAL DE LA CALIDAD DEL AZULEJO Y DEL PAVIMENTO CERÁMICO, 11., 2010, Castellón de La Plana. Anales... Castellón de La Plana: Cámara Oficial de Comercio, Industria y Navegación, 2010. p. 1-13.
- AMORÓS, J. L. et al. Acordo esmalte-suporte (I): A falta de acordo como causa do empenamento. Cerâmica Industrial, v. 1, n. 4-5, p. 6-13, 1996.
- AMORÓS, J. L. et al. Evolución de la porosidad de esmaltes durante la cocción. Mecanismo y cinética de la sinterización. In: CONGRESO MUNDIAL DE LA CALIDAD DEL AZULEJO Y DEL PAVIMENTO CERÁMICO, 4., 1996. Anales... Castellón de la Plana: AICE, 1996. p. 115-135.
- AMORÓS, J. L. et al. Elasticidade dos Suportes e Vidrados Cerâmicos. Cerâmica Industrial, v. 2, n. 3-4, p. 19-27, 1997.
- MELCHIADES, F. G.; BARBOSA, A. R. D.; BOSCHI, A. O. Relação entre a curvatura de revestimentos cerâmicos e as características da camada de engobe. Cerâmica Industrial, v. 5, n. 2, p. 29-33, 2000.
- DAL BÓ, M. et al. Interaction between support-glaze and support-engobe in ceramic tiles. In: CONFERENCE OF THE EUROPEAN CERAMIC SOCIETY, 12., 2011, Stockholm. Proceedings... Stockholm: ECerS 2011.
- DAL BÓ, M. et al. Efeito das propriedades dos esmaltes e engobes sobre a curvatura de revestimentos cerâmicos. Cerâmica, v. 58, p. 118-125, 2012. http://dx.doi.org/10.1590/S0366-69132012000100019
- GENNARI, R. C. et al. A Influência das Características do Engobe na Curvatura Central das Placas Cerâmicas Parte I: Desenvolvimento dos Engobes. Cerâmica Industrial, v. 16, n. 5-6, p. 12-14, 2011.
- GENNARI, R. C. et al. A Influência das Características do Engobe na Curvatura Central das Placas Cerâmicas Parte II: a Curvatura Central. Cerâmica Industrial, v. 17, n. 1, p. 14-19, 2012.
- REIFENSTEIN, A. P. et al. Behaviour of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel, v. 78, n. 12, p. 1449-1461, 1999. http://dx.doi.org/10.1016/S0016-2361(99)00065-4
- CANTAVELLA, V. et al. Residual stresses in porcelain tiles formed by two-charge pressing. In: WORLD CONGRESS ON CERAMIC TILE QUALITY, 6., 2000, Castellón De La Plana. Proceedings... Castellón De La Plana: Cámara Oficial de Comercio, Industria y Navegación, 2000. p. 335-349.